Tesi etd-09202017-095045 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
CARTA, ANTONIO
URN
etd-09202017-095045
Titolo
Deep learning models for track reconstruction in particle physics
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Dott. Bacciu, Davide
relatore Dott. Pantaleo, Felice
relatore Dott. Pantaleo, Felice
Parole chiave
- CERN
- CMS
- convolutional neural networks
- Deep learning
- high-energy phisics
- machine learning
- neural networks
- track reconstruction
Data inizio appello
06/10/2017
Consultabilità
Completa
Riassunto
Track reconstruction is one of the most expensive tasks performed during the analysis due to its combinatorial nature and the high number of fake tracks generated. In this thesis we develop a deep learning model capable of recognizing fake tracks using only two hit shapes of a track seed.
File
Nome file | Dimensione |
---|---|
tesi_3.pdf | 2.46 Mb |
Contatta l’autore |