logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-09202006-174717


Tipo di tesi
Tesi di laurea specialistica
Autore
Cantu', Matteo
Indirizzo email
matte.mail@libero.it
URN
etd-09202006-174717
Titolo
Time dependent properties of polymer modifed asphalts
Dipartimento
INGEGNERIA
Corso di studi
INGEGNERIA CHIMICA
Relatori
Relatore Ing. Polacco, Giovanni
Relatore Prof. Zanzotto, Ludo
Parole chiave
  • accumulated strain
  • polymer modified asphalt binders
  • Repeated creep
  • rheology
  • SEBS
Data inizio appello
11/10/2006
Consultabilità
Completa
Riassunto
Creep-recovery and stress-relaxation experiments were performed on neat and Polymer Modified Asphalts (PMAs). Through these experiments it is possible to deeply analyze these viscoelastic materials, both in linear and nonlinear conditions. The investigated functions are the relaxation modulus, G, and the creep compliance, J. As long as experiments are run into the borders of linearity, i.e. small stress and strain, simple relations can be used to describe G and J. On the contrary, in nonlinear conditions, the analytical description of G and J from stress and strain becomes extremely complex. The introduction of the so called “memory function” M, is one of the most used solution for the treatment of such problem and has been adopted in this study. Moreover, various linear viscoelastic models were used for the description of the creep function. The limits on the use of such models on nonlinear experiments were discussed. The dynamic creep experiment, where N consecutive creep and recovery cycles are run was also widely studied. This experiment has been recently purposed by the American National Cooperative Highway Research Program (NCHRP), as the new test for prediction of the rutting performance of PMAs. The nonlinear G(t,ã) function was studied and fitted to various linear and nonlinear viscoelastic models. The three dimensional surface of the memory function M(t,ã) was built from relaxation data and studied. The problem of separability of the memory function, i.e. the problem of the damping function, was also discussed.
File