Tesi etd-09192019-085220 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
CAFAGNA, MICHELE
URN
etd-09192019-085220
Titolo
Headline Generation and Analysis of Writing Styles in Journalism
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Bacciu, Davide
relatore Prof.ssa Nissim, Malvina
relatore Prof.ssa Nissim, Malvina
Parole chiave
- deep learning
- generation
- machine learning
- natural language processing
- style analysis
- summarisation
- text generation
Data inizio appello
04/10/2019
Consultabilità
Completa
Riassunto
The thesis deal with generative language models in the journalism domain, focusing on headline generation and style transfer on Italian newspapers. The work covers all the natural language processing pipeline, from the data collection to the human evaluation and it proposes a method to study the stylistic aspects looking at the embeddings shift and it investigates on style transfer, experimenting various approaches.
File
Nome file | Dimensione |
---|---|
m.cafagna_thesis.pdf | 1.34 Mb |
Contatta l’autore |