Tesi etd-09142019-113033 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
SILVESTRI, LUCA
URN
etd-09142019-113033
Titolo
Phase Transition Adaptation in Reservoir Computing
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Gallicchio, Claudio
relatore Prof. Micheli, Alessio
relatore Prof. Micheli, Alessio
Parole chiave
- echo state networks
- edge of stability
- machine learning
- recurrent neural networks
- reservoir computing
- unsupervised adaptation
Data inizio appello
04/10/2019
Consultabilità
Non consultabile
Data di rilascio
04/10/2089
Riassunto
Artificial recurrent neural networks are a powerful information processing abstraction, and Reservoir Computing provides an efficient strategy to build robust implementations by projecting external inputs into high dimensional dynamical system trajectories. In this contribution, we propose an extension of the original approach, a local unsupervised learning mechanism we call Phase Transition Adaptation, designed to drive the system dynamics towards the 'edge of stability'. Here, the complex behaviour exhibited by the system should elicit an enhancement in its overall computational capacity. We show experimentally that our approach consistently achieves its purpose over several datasets.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |