Tesi etd-09092022-184729 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
DI MAURO, ANTONIO
URN
etd-09092022-184729
Titolo
Federated Echo State Networks for Stress Prediction in the Automotive Use Case
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Bacciu, Davide
Parole chiave
- echo state networks
- federated echo state networks
- federated learning
Data inizio appello
02/12/2022
Consultabilità
Non consultabile
Data di rilascio
02/12/2092
Riassunto
Nowadays Internet of Things (IoT) provides ubiquitous sensing and computing capabilities. Artificial Intelligence provides insights on the data generated by IoT devices. At the same time the training data with sensitive user informations raises privacy concerns. So, the necessity for developing privacy-enhanced intelligent IoT networks and applications. In the context of the Human State Monitoring task of the TEACHING project, We experiment learning models that let the cyber-physical systems of systems be humanistic intelligent, and so able to adapts itself by means of human feedback. We train an Echo State Network ables to recognize the stress of a human driver. Then, we analyze such model in a Federated Learning scenario and we use and compare different federated learning algorithms.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |