logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-09082020-183819


Tipo di tesi
Tesi di laurea magistrale
Autore
LECCESE, GIACOMO MARIA
URN
etd-09082020-183819
Titolo
Differentiation of measures and area formulas in metric spaces
Dipartimento
MATEMATICA
Corso di studi
MATEMATICA
Relatori
relatore Prof. Magnani, Valentino
controrelatore Prof. Alberti, Giovanni
Parole chiave
  • Federer density
  • measure theoretic area formula
Data inizio appello
25/09/2020
Consultabilità
Non consultabile
Data di rilascio
25/09/2090
Riassunto
The present thesis deals with the Federer density, which is a specific function depending on a measure defined on a metric space and an another measure built throw a gauge function. Both measures are defined in the same metric space. Federer density was introduced for the first time in an article of Prof.Magnani, in order to find a measure theoretic area formula in metric spaces. The goal of the thesis is to present a complete discussion on Federer density and some applications. In particular in the thesis a new version of the theorem is elaborated. By adding some natural hypotheses, we have extended the measure theoretic area formula from the Borel case to the measurable case.
File