Tesi etd-09082020-183819 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
LECCESE, GIACOMO MARIA
URN
etd-09082020-183819
Titolo
Differentiation of measures and area formulas in metric spaces
Dipartimento
MATEMATICA
Corso di studi
MATEMATICA
Relatori
relatore Prof. Magnani, Valentino
controrelatore Prof. Alberti, Giovanni
controrelatore Prof. Alberti, Giovanni
Parole chiave
- Federer density
- measure theoretic area formula
Data inizio appello
25/09/2020
Consultabilità
Non consultabile
Data di rilascio
25/09/2090
Riassunto
The present thesis deals with the Federer density, which is a specific function depending on a measure defined on a metric space and an another measure built throw a gauge function. Both measures are defined in the same metric space. Federer density was introduced for the first time in an article of Prof.Magnani, in order to find a measure theoretic area formula in metric spaces. The goal of the thesis is to present a complete discussion on Federer density and some applications. In particular in the thesis a new version of the theorem is elaborated. By adding some natural hypotheses, we have extended the measure theoretic area formula from the Borel case to the measurable case.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |