Tesi etd-08202019-195010 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
BENEDINI, LORENZO
URN
etd-08202019-195010
Titolo
Variation of class numbers in Z_p-extensions with base field of small degree over Q.
Dipartimento
MATEMATICA
Corso di studi
MATEMATICA
Relatori
relatore Dvornicich, Roberto
relatore Schoof, René
correlatore Fouquet, Olivier
relatore Schoof, René
correlatore Fouquet, Olivier
Parole chiave
- circular units
- class number
- cyclotomic
- Iwasawa
- non-p-part
- triviality
- Z_p-extension
Data inizio appello
20/09/2019
Consultabilità
Non consultabile
Data di rilascio
20/09/2089
Riassunto
Inside this thesis one can find a study, based on the work of professor Kuniaki Horie, of the non-p-part of the class number of a cyclotomic Z_p-extension over Q or an imaginary quadratic field. Starting from the well-known theorem of Washington which states that for this kind of fields the l part of the class number (for l a prime different from p) is bounded, one wonders when it is actually trivial. By rewriting the class number in terms of the index of the group of circular units and applying the analytic class number formula for CM-fields, we prove that triviality occurs eventually outside some arithmetic progression. An effective bound depending on the length of the progression is also provided.
File
Nome file | Dimensione |
---|---|
La tesi non è consultabile. |