ETD

Archivio digitale delle tesi discusse presso l'Università di Pisa

Tesi etd-07162007-200401


Tipo di tesi
Tesi di dottorato di ricerca
Autore
Pelusi, Luciana
Indirizzo email
luciana_pelusi@yahoo.it, luciana.pelusi@iit.cnr.it
URN
etd-07162007-200401
Titolo
Computer-network Solutions for Pervasive Computing
Settore scientifico disciplinare
ING-INF/05
Corso di studi
INGEGNERIA DELL'INFORMAZIONE
Relatori
Relatore Prof. Anastasi, Giuseppe
Relatore Dott. Conti, Marco
Parole chiave
  • Sparse Sensor Networks
  • Power Saving
  • Opportunistic Networking
  • Network Coding
  • Multimedia Streaming
  • Erasure Coding
  • Wireless Communications
  • Wireless Testbeds
Data inizio appello
25/05/2007
Consultabilità
Completa
Riassunto
Lo scenario delle reti di comunicazione di tipo wireless sta rapidamente evolvendo verso i sistemi pervasivi in cui i dispositivi wireless, di diversi tipi e grandezze, costituiscono parte integrante dell’ambiente in cui sono immersi, ed interagiscono continuamente ed in maniera trasparente con gli utenti che vi vivono o che lo attraversano. Si parla a tal proposito anche di ambienti intelligenti. Seguendo l’evoluzione dai sistemi mobili a quelli pervasivi, questa tesi rivisita diversi tipi di ambienti wireless che si sono sviluppati e diffusi negli ultimi 20 anni: a partire dalle wireless LANs, proseguendo con le reti ad hoc, per finire con le reti opportunistiche. Sebbene molte problematiche delle reti wireless si ripropongano in quasi tutti gli scenari (ad esempio il risparmio energetico), a scenari wireless diversi corrispondono in genere utilizzi differenti e diversi fabbisogni degli utenti, come pure problemi specifici che richiedono soluzioni dedicate. Alcune soluzioni specifiche sono analizzate e proposte in questa tesi. Le reti WLANs basate su infrastruttura sono usate generalmente per fornire accesso alla rete Internet ed infatti lo scenario che le comprende è solitamente riferito come Wireless Internet. Nonostante la presenza dell’infrastruttuta fissa garantisca in generale una trasmissione di dati affidabile, l’utilizzo di questo tipo di reti per fornire esattamente gli stessi tipi di servizi delle reti fisse provoca un elevato consumo di risorse che all’interno delle WLANs sono invece limitate. Inoltre l’utilizzo dei protocolli dello stack TCP/IP sui link wireless è di solito fonte di inefficienze viste le profonde differenze esistenti fra i link wireless e quelli fissi. La progettazione di servizi in uno scenario di wireless Internet ha come primario obiettivo quello di garantire la fruizione da parte degli utenti mobili senza soluzione di continuità, mascherando così la presenza del link wireless che ha banda nominale inferiore rispetto ai link fissi ed è soggetto a maggiori perdite, e supportando la mobilità degli utenti all’interno delle zone di copertura (handoff). La gestione dei servizi di wireless Internet deve sempre essere integrata con soluzioni di risparmio energetico tese ad allungare il più possibile l’autonomia energetica dei dispositivi degli utenti (alimentati a batteria) garantendo così loro un servizio duraturo nel tempo. Abbiamo studiato una soluzione per servizi di streaming audio-video verso terminali mobili in un ambiente di wireless LAN. Oltre a garantire la continuità della riproduzione multimediale con buona qualità, questa soluzione ottimizza il consumo energetico del terminale wireless agendo sulla scheda di rete wireless. Durante lo streaming infatti, la scheda di rete viene periodicamente messa in uno stato a basso consumo energetico (sleep). I periodi di sleep della scheda vengono calcolati adattivamente in funzione dello stato di avanzamento della riproduzione multimediale e della banda disponibile istantaneamente sul canale wireless opportunamente monitorato. Il riposo della scheda di rete non incide sul processo di riproduzione e quindi sulla qualità del servizio percepita dall’utente mobile.
A differenza delle WLANs, le reti MANETs sono prive di infrastruttura fissa ed i nodi che vi partecipano si autoconfigurano ed autoorganizzano tra di loro. Le MANETs si mostrano particolarmente adatte ad esigenze temporanee di gruppi di utenti che vogliano condividere dati, scambiarsi messaggi, o altro. Uno dei principali interessi di ricerca nell’ambito delle reti MANETs ha riguardato storicamente lo studio dei protocolli di routing per l’instradamento delle informazioni fra nodi sorgente e nodi destinatari. In una rete MANET infatti, vista l’assenza di infrastruttura, ogni nodo è coinvolto nella funzione di instradamento. Negli ultimi anni tuttavia, un nuovo aspetto di ricerca sta acquistando sempre maggiore attenzione e riguarda la sperimentazione su testbed reali. Le poche esperienze sperimentali eseguite su MANETs hanno dimostrato l’inadeguatezza degli studi di tipo analitico-simulativo nel giudicare l’efficacia delle soluzioni progettate per reti MANETs. Questo è principalmente dovuto al fatto che gli scenari wireless sono estremamente complessi e soggetti a fenomeni di diversa natura che influiscono sulle comunicazioni ma che sono difficilmente condensabili in un modello analitico completo. I modelli esistenti nei simulatori attualmente diffusi sono spesso causa di errori nel validare o al contrario bocciare le soluzioni ed i protocolli testati. Le attività di sperimentazione su testbed reali hanno dunque un duplice scopo: i) validare protocolli e soluzioni proposte attualmente, e ii) gettare le basi per la costruizione di nuovi modelli analitici e simulativi che siano maggiormente attendibili di quelli attuali. L’esperienza condotta su di un testbed reale per reti ad hoc comprendente portatili e palmari fino ad un totale di 12 nodi, ha dimostrato l’efficacia delle implementazioni di due protocolli di routing: AODV (Ad hoc On demand Distance Vector) ed OLSR (Optimized Link State Routing). Tuttavia, benchè entrambi siano funzionalmente corretti, mostrano comportamenti differenti quando usati per supportare servizi di livello middleware ed applicativi (vedi ad esempio file sharing o trasferimenti ftp). In particolare, i ritardi causati dalla scoperta delle rotte in AODV sono spesso causa di inefficienze o addirittura di interruzione del servizio. OLSR invece, seppure responsabile di un overhead di traffico maggiore, si mostra maggiormente adatto alle interazioni con i servizi dei livelli superiori. Infine, l’esperienza ha dimostrato la necessità di ripensare molti dei servizi disponibili su rete fissa per adeguarli alle caratteristiche delle reti wireless e particolarmente di quelle ad hoc.
Una nuova tipologia di reti wireless sta emergendo attualmente e si sta rivelando di particolare interesse: quella delle reti opportunistiche. Le reti opportunistiche non si appoggiano su alcuna infrastruttura fissa, né cercano di autoconfigurarsi in una infrastruttura wireless temporanea costituita da nodi vicini. Sfruttano le opportunità di contatto che si verificano fra i nodi (dispositivi wireless di piccola taglia) trasportati dagli utenti nelle loro attività quotidiane (ad esempio a lavoro, sugli autobus, a scuola o all’università, ecc.). I messaggi sono scambiati ogni qualvolta si renda possibile, ovunque sia possibile ed il successo della loro trasmissione è strettamente legato alle dinamiche sociali in cui sono coinvolti gli utenti che trasportano i dispositivi ed alla storia degli incontri tra individui. Data la mobilità estremamente elevata che caratterizza questo nuovo scenario di reti, e la nota rumorosità delle comunicazioni wireless, l’affidabilità delle trasmissioni emerge come uno dei fattori di principale interesse. Infatti, le comunicazioni possono aver luogo soltanto durante i periodi di contatto tra i nodi e devono essere estremamente veloci ed efficaci. Questo porta a dover fare uno sforzo di progettazione per nuovi protocolli di comunicazione che si diversifichino da quelli oggi più diffusi e basati sulla ritrasmissione dei dati mancanti. Le ritrasmissioni infatti, nella maggior parte dei casi potrebbero non poter essere eseguite per mancanza di tempo. Una strategia valida per gestire l’affidabilità delle comunicazioni opportunistiche in simili scenari estremi (caratterizzati cioè da scarse risorse e scarsa connettività) prevede l’utilizzo combinato di tecniche di codifica dei dati e strategie di instradamento di tipo epidemico. Questo approccio sfrutta la ridondanza sia delle informazioni, sia dei percorsi. La ridondanza delle informazioni dà robustezza a fronte della perdita dei dati in rete poiché è necessario che soltanto un sottoinsieme dei codici generati arrivi a destinazione per consentire al ricostruzione corretta delle informazioni. La ridondanza dei percorsi invece è necessaria poichè non è possibile predirre in anticipo la sequenza dei contatti che può portare i dati a destinazione e pertanto è necessario distribuire l’informazione in più direzioni. Le reti opportunistiche caratterizzate dalla presenza di dispositivi con limitata autonomia energetica e risorse limitate, offrono attualmente lo scenario che meglio traduce il concetto di sistemi pervasivi. Di particolare interesse è il caso delle reti di sensori sparse in cui i sensori sono disposti nell’ambiente con funzione di monitoraggio ed i dati che collezionano vengono raccolti da degli agenti mobili che passano nelle vicinanze e che sono noti come data MULEs. I data MULEs possono utilizzare le informazioni acquisite dai sensori per eseguire applicazioni dipendenti dal contesto o possono semplicemente inoltrarle fino a quando raggiungono l’infrastruttura dove vengono elaborati e memorizzati. Le interazioni fra i sensori immersi nell’ambiente ed i data MULEs sono soltanto un primo passo di un sistema di comunicazione globale completamente opportunistico in cui i data MULEs scambiano l’un l’altro le informazioni che trasportano fino a quando infine, i dati pervengono alle destinazioni più lontane. In questo scenario, le comunicazioni wireless completano naturalmente le interazioni fra gli utenti e si verificano ogni qualvolta gli utenti si incontrano oppure si avvicinano casualmente l’un l’altro, dovunque questa interazione avvenga. Per supportare un simile framework, è necessario sviluppare nuovi paradigmi di comunicazione che tengano in considerazione l’assenza di link stabili tra i nodi che comunicano (connettività intermittente) e che assumano quindi la disponibilità di brevi periodi di contatto per comunicare. Inoltre i nuovi paradigmi di comunicazione devono generalmente assumere l’assenza di un percorso completo fra i nodi sorgente e destinatario e sfruttare invece forme di instradamento delle informazioni che sono simili al modo in cui avvengono le interazioni sociali fra le persone. Strategie di instradamento basate su codifica dei dati offrono una valida soluzione per supportare il framework emergente dei sistemi pervasivi.
File