Tesi etd-07062021-025804 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
PULIZZI, MAURIZIO
URN
etd-07062021-025804
Titolo
Identification of unequally treated subgroups in machine learning models through top-k subgroup discovery techniques
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
COMPUTER ENGINEERING
Relatori
relatore Prof. Cimino, Mario Giovanni Cosimo Antonio
relatore Prof.ssa Vaglini, Gigliola
relatore Prof. Pechenizkiy, Mykola
relatore Prof.ssa Vaglini, Gigliola
relatore Prof. Pechenizkiy, Mykola
Parole chiave
- bias identification
- fairness
- subgroup discovery
Data inizio appello
23/07/2021
Consultabilità
Non consultabile
Data di rilascio
23/07/2061
Riassunto
The thesis concerns the creation of a framework that allows to provide support for the discovery of unequally treated subgroups in a machine learning model, or that appear more discriminated in a dataset. This was done through the use of subgroup discovery algorithms combined with the most widely used fairness metrics. The developed framework was used for the analysis of the UCI adult dataset, which reports the data of about 48,000 individuals, together with a label indicating whether they earn more or less than 50k per year. The framework made it possible to bring to light the subgroups of the dataset within which there is a high disparity between men and women.
File
Nome file | Dimensione |
---|---|
La tesi non è consultabile. |