ETD system

Electronic theses and dissertations repository

 

Tesi etd-07022009-120542


Thesis type
Tesi di dottorato di ricerca
Author
DEMDAH, KARTOUE MADY
URN
etd-07022009-120542
Title
Théorèmes de h-cobordisme et de s-cobordisme semi-algébrique
Settore scientifico disciplinare
MAT/03
Corso di studi
MATEMATICA
Commissione
tutor Prof. Broglia, Fabrizio
Parole chiave
  • variété Nash
  • variétés semi-algebriques
  • topologie PL
  • topologie différentielle
  • cobordisme
Data inizio appello
28/07/2009;
Consultabilità
parziale
Data di rilascio
28/07/2049
Riassunto analitico
Il teorema di h-cobordismo è un teorema noto in topologia differenziale e topologia PL. Fu dimostrato da<br>Stephen Smale ed impiegato nella dimostrazione della congettura di Poincaré in dimensione maggiore di quattro. La generalizzazione del teorema di h-cobordismo per cobordismi possibilmente non semplicemente connessi è detta teorema di s-cobordismo.<br>In questa tesi dimostriamo le versioni semialgebriche e Nash di questi teoremi.<br>Più precisamente, con i dati semialgebrici (rispettivamente Nash), otteniamo un omeomorfismo semialgebrico (rispettivamente un diffeomorfismo Nash).<br>I principali strumenti impiegati sono la triangolazione semialgebrica e l&#39;approssimazione Nash.<br>È ben noto che si può misurare la complessità degli oggetti semialgebrici o Nash. L&#39;omeomorfismo semialgebrico ed il diffeomorfismo Nash che costruiamo nella nostra dimostrazione dei teoremi di h ed s-cobordismo hanno limite uniforme sulla loro complessità rispetto alla complessità dei cobordismi. <br>Infine, deduciamo la validità di questi teoremi nelle versioni semialegbrica e Nash su qualunque campo reale chiuso.
File