logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-07012020-120452


Tipo di tesi
Tesi di laurea magistrale
Autore
BOCHICCHIO, ALFREDO
URN
etd-07012020-120452
Titolo
Small Obstacles Detection for Autonomous Navigation
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
INGEGNERIA ROBOTICA E DELL'AUTOMAZIONE
Relatori
relatore Prof. Avizzano, Carlo Alberto
Parole chiave
  • Autonomous
  • Detection
  • Navigation
  • Obstacle
Data inizio appello
16/07/2020
Consultabilità
Non consultabile
Data di rilascio
16/07/2090
Riassunto
The work focuses on an obstacle detection framework for an autonomous robotics platform. State of the art classical and Deep Learning existing frameworks and approaches are first explored. A probabilistic framework that includes 3D reconstruction techniques, stereo matching and UV-disparity projection is designed. The system is integrated with appearance cues, edges related metrics and ground plane homography estimation to robustly segment obstacles in a wide range of scenarios. A synthetic and real datasets are generated to test the performances and accuracy of the proposed algorithms. The framework is deployed on a autonomous mobile robot where real time performances are achieved, using CUDA computing capabilities of a NVIDIA Xavier embedded platform.
File