Tesi etd-06302023-123109 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
PECORELLI, NATALIA
URN
etd-06302023-123109
Titolo
Caratterizzazione chimica delle modifiche a carico di plastiche biodegradabili in condizioni di degrado naturali e controllate
Dipartimento
CHIMICA E CHIMICA INDUSTRIALE
Corso di studi
CHIMICA
Relatori
relatore Ribechini, Erika
Parole chiave
- bioplastiche
- bioplastics
- EGA/MS
- ESI-Q-ToF
- GC/MS
- Py-GC/MS
- XRF
Data inizio appello
17/07/2023
Consultabilità
Non consultabile
Data di rilascio
17/07/2093
Riassunto
Inserendo la tematica delle bioplastiche in un quadro di economia circolare, si presenta la necessità di una strategia adatta al loro smaltimento. La tecnologia di carbonizzazione idrotermale (HTC) sembra presentare ottime potenzialità per il trattamento dei biomateriali, sebbene manchino studi approfonditi sulle bioplastiche. Valutazione dell’applicabilità dei possibili trattamenti e valorizzazione dei rifiuti a materie prime seconde non possono prescindere da un’accurata conoscenza della natura chimica dei materiali vergini e delle modifiche loro apportate dai processi bio- e termo-degradativi. L’obiettivo principale del presente lavoro di tesi è lo sviluppo e applicazione di un protocollo analitico da impiegare per lo studio chimico di bioplastiche commerciali e delle modifiche subite a seguito di degradazione in ambiente naturale simulato (incubazione in compost della durata di 21 giorni in condizioni aerobiche) e controllato (HTC condotta a temperature comprese fra 160 e 250 °C). Bioplastiche commerciali e residui solidi sono stati caratterizzati con tecniche basate su pirolisi analitica quali Py-GC/MS ed EGA/MS, mentre la componente inorganica è stata analizzata attraverso analisi XRF. I prodotti di degradazione termica presenti nelle frazioni liquide sono stati identificati in ESI-Q-ToF e GC/MS. I composti gassosi rilasciati durante la degradazione in compost sono stati estratti dallo spazio di testa con SPME e successivamente analizzati in GC/MS.
Considering bioplastics in a circular economy context, the need of a strategy for their disposal arises. Hydrothermal carbonisation (HTS) shows excellent potential for the treatment of biomaterials, although there is a lack of extensive studies of its application to bioplastics. Evaluation of the applicability of different techniques and valorisation of waste cannot be separated from an accurate knowledge of the chemical nature of virgin materials and of the modifications due to bio- and thermo-degradation processes. The main aim of this thesis is the development and application of an analytical protocol for the chemical characterisation of commercial bioplastics and modifications resulting from degradation in a simulated natural environment (incubation in compost in aerobic conditions lasting 21 days) and in a controlled environment (HTC under temperatures between 160 and 250 °C). Commercial bioplastics and solid residues were characterised through techniques based on analytical pyrolysis such as Py-GC/MS and EGA/MS, whereas the inorganic component was analysed by XRF. Thermal degradation products in liquid phases were identified by means of ESI-Q-ToF and GC/MS. Gaseous compounds released during degradation in compost were extracted from the head space and then analysed in GC/MS.
Considering bioplastics in a circular economy context, the need of a strategy for their disposal arises. Hydrothermal carbonisation (HTS) shows excellent potential for the treatment of biomaterials, although there is a lack of extensive studies of its application to bioplastics. Evaluation of the applicability of different techniques and valorisation of waste cannot be separated from an accurate knowledge of the chemical nature of virgin materials and of the modifications due to bio- and thermo-degradation processes. The main aim of this thesis is the development and application of an analytical protocol for the chemical characterisation of commercial bioplastics and modifications resulting from degradation in a simulated natural environment (incubation in compost in aerobic conditions lasting 21 days) and in a controlled environment (HTC under temperatures between 160 and 250 °C). Commercial bioplastics and solid residues were characterised through techniques based on analytical pyrolysis such as Py-GC/MS and EGA/MS, whereas the inorganic component was analysed by XRF. Thermal degradation products in liquid phases were identified by means of ESI-Q-ToF and GC/MS. Gaseous compounds released during degradation in compost were extracted from the head space and then analysed in GC/MS.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |