Tesi etd-06252018-134413 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
GLAUDO, FEDERICO
URN
etd-06252018-134413
Titolo
A New Approach to the Random Matching Problem
Dipartimento
MATEMATICA
Corso di studi
MATEMATICA
Relatori
relatore Prof. Ambrosio, Luigi
controrelatore Dott. Trevisan, Dario
controrelatore Dott. Trevisan, Dario
Parole chiave
- Matching Problem
- Optimal Transport
- Probability
Data inizio appello
13/07/2018
Consultabilità
Completa
Riassunto
The random matching problem concerns the study of the transportation cost of empirical measures of independent identically distributed random variables towards their common law.
Working on a 2-dimensional manifold with cost given by the quadratic Wasserstein distance $W^2_2$, we describe an improvement over the technique by Ambrosio, Stra, Trevisan to compute the asymptotic rate of the expected cost. Furthermore, we outline a new optimality condition for transport maps on manifolds.
Working on a 2-dimensional manifold with cost given by the quadratic Wasserstein distance $W^2_2$, we describe an improvement over the technique by Ambrosio, Stra, Trevisan to compute the asymptotic rate of the expected cost. Furthermore, we outline a new optimality condition for transport maps on manifolds.
File
Nome file | Dimensione |
---|---|
thesis.pdf | 754.08 Kb |
Contatta l’autore |