Tesi etd-06252012-133856 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
CALVIELLO, LORENZO
Indirizzo email
calviello.l@gmail.com, gimli87lor@hotmail.com
URN
etd-06252012-133856
Titolo
Quasi-cellular Systems: Stochastic Simulation Analysis at Nanoscale Range
Dipartimento
BIOLOGIA
Corso di studi
BIOLOGIA MOLECOLARE E CELLULARE
Relatori
relatore Prof. Marangoni, Roberto
relatore Dott. Stano, Pasquale
controrelatore Prof. Barale, Roberto
controrelatore Prof. Luisi, Pier Luigi
relatore Dott. Stano, Pasquale
controrelatore Prof. Barale, Roberto
controrelatore Prof. Luisi, Pier Luigi
Parole chiave
- Gillespie algorithm
- liposomes
- simulazione stocastica
- synthetic biology
Data inizio appello
18/07/2012
Consultabilità
Completa
Riassunto
I complessi sistemi di reazioni biochimiche all’interno della cellula sono altamente compartimentalizzati, conseguenza di un importante fenomeno di macromolecolar crowding (sovraffollamento molecolare). E’ dunque importante determinare il comportamento e le proprietà di un sistema di reazioni in piccoli volumi. Sono stati riprodotti con successo diversi sistemi di semplici reazioni all’interno di vescicole lipidiche (liposomi) nell’ordine del micro/nanometro di diametro, osservando in molti casi una risposta cinetica diversa dalle reazioni in esame rispetto al comportamento in sistemi di grandi volumi. Questo fenomeno di divergenza tra piccoli e grandi volumi è in gran parte dipendente da fenomeni non completamente chiariti,
quali l’incapsulamento delle specie e il crowding molecolare, aspetti sempre più importanti man mano che l’attenzione si sposta verso i piccoli volumi. Recenti dati sperimentali dimostrano che il fenomeno dell'intrappolamento sembra non seguire un andamento casuale squisitamente probabilistico, ma un comportamento di tipo power-law (a legge di potenza), in cui solo pochissime vescicole intrappolano tante specie, mentre la maggior parte resta completamente vuota.
A tal proposito è stato intrapreso uno studio sui meccanismi generativi delle distribuzioni a legge di potenza calate nel contesto dell’incapsulamento (entrapment) delle specie all'interno di vescicole lipidiche.
Utilizzando un sistema cell-free di trascrizione/traduzione (PURESYSTEM™), volto alla produzione di EGFP all’interno di liposomi di POPC, è possibile monitorare la produzione di proteina fluorescente in liposomi di differente grandezza. Tuttavia, è molto difficile osservare la produzione di molecole fluorescenti in singole
vescicole di 100 nm di diametro; diventa così importante poter studiare in silico la di produzione di proteina in singole vescicole virtuali, utilizzando un modello formalmente valido del complesso sistema di reazioni del PURESYSTEM™.
QDC (Quick Direct-Method Controlled), è un software di simulazione stocastico precedentemente sviluppato in laboratorio, basato sull’algoritmo di simulazione SSA Direct-Method di Gillespie, tra i più usati in biologia computazionale/systems biology.
L’argomento della tesi riguarda l’uso di questo software nello studio delle oltre 100 reazioni biochimiche del PURESYSTEM™, comparando i risultati ottenuti in diverse condizioni (volume totale di reazione, concentrazioni delle specie, costanti cinetiche delle singole reazioni). Dopo aver affinato il modello in silico di Trascrizione/traduzione coupled (accoppiato), sono state effettuate delle simulazioni variando alcune variabili macroscopiche (concentrazioni delle specie e costanti cinetiche), mostrando un'importante dipendenza della traduzione dalla trascrizione, soprattutto considerando il
grande limite energetico di un sistema che non produce al suo interno nucleotidi trifosfato.
quali l’incapsulamento delle specie e il crowding molecolare, aspetti sempre più importanti man mano che l’attenzione si sposta verso i piccoli volumi. Recenti dati sperimentali dimostrano che il fenomeno dell'intrappolamento sembra non seguire un andamento casuale squisitamente probabilistico, ma un comportamento di tipo power-law (a legge di potenza), in cui solo pochissime vescicole intrappolano tante specie, mentre la maggior parte resta completamente vuota.
A tal proposito è stato intrapreso uno studio sui meccanismi generativi delle distribuzioni a legge di potenza calate nel contesto dell’incapsulamento (entrapment) delle specie all'interno di vescicole lipidiche.
Utilizzando un sistema cell-free di trascrizione/traduzione (PURESYSTEM™), volto alla produzione di EGFP all’interno di liposomi di POPC, è possibile monitorare la produzione di proteina fluorescente in liposomi di differente grandezza. Tuttavia, è molto difficile osservare la produzione di molecole fluorescenti in singole
vescicole di 100 nm di diametro; diventa così importante poter studiare in silico la di produzione di proteina in singole vescicole virtuali, utilizzando un modello formalmente valido del complesso sistema di reazioni del PURESYSTEM™.
QDC (Quick Direct-Method Controlled), è un software di simulazione stocastico precedentemente sviluppato in laboratorio, basato sull’algoritmo di simulazione SSA Direct-Method di Gillespie, tra i più usati in biologia computazionale/systems biology.
L’argomento della tesi riguarda l’uso di questo software nello studio delle oltre 100 reazioni biochimiche del PURESYSTEM™, comparando i risultati ottenuti in diverse condizioni (volume totale di reazione, concentrazioni delle specie, costanti cinetiche delle singole reazioni). Dopo aver affinato il modello in silico di Trascrizione/traduzione coupled (accoppiato), sono state effettuate delle simulazioni variando alcune variabili macroscopiche (concentrazioni delle specie e costanti cinetiche), mostrando un'importante dipendenza della traduzione dalla trascrizione, soprattutto considerando il
grande limite energetico di un sistema che non produce al suo interno nucleotidi trifosfato.
File
Nome file | Dimensione |
---|---|
TesiMagi...iello.pdf | 2.35 Mb |
Contatta l’autore |