Tesi etd-06162022-104903 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
CORTI, FRANCESCO
Indirizzo email
f.corti3@studenti.unipi.it, cortifrancesco05@gmail.com
URN
etd-06162022-104903
Titolo
What Is Lost in Compressed Models Trained with Supervised Contrastive Learning
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Bacciu, Davide
relatore Prof. Saukh, Olga
relatore Prof. Saukh, Olga
Parole chiave
- pruning
- semi-supervised learning
- sparsity
- supervised learning
Data inizio appello
01/07/2022
Consultabilità
Non consultabile
Data di rilascio
01/07/2062
Riassunto
We study the impact of different pruning techniques on the representation learned by deep neural networks trained with contrastive loss functions. Our work finds that at high sparsity levels, contrastive learning results in a higher number of misclassified examples relative to models trained with traditional cross-entropy loss. To understand this pronounced difference, we use metrics such as the number of PIEs (Hooker et al.2019), Q-Score (Kalibhat et al., 2022) and Prediction Depth score (Baldock et al., 2021) to measure the impact of pruning on the learned representation quality. Our analysis suggests the schedule of the pruning method implementation matters. We find that the negative impact of sparsity on the quality of the learned representation is the highest when pruning is introduced early-on in training phase.
File
Nome file | Dimensione |
---|---|
La tesi non è consultabile. |