Tesi etd-06152015-192056 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
IACONIS, LUCA
URN
etd-06152015-192056
Titolo
A dead-beat estimator for on-line identification of non-linear equivalent parameters of brushless machines
Dipartimento
INGEGNERIA DELL'ENERGIA, DEI SISTEMI, DEL TERRITORIO E DELLE COSTRUZIONI
Corso di studi
INGEGNERIA ELETTRICA
Relatori
relatore Ing. Bolognesi, Paolo
tutor Prof. Zanchetta, Pericle
tutor Prof. Zanchetta, Pericle
Parole chiave
- control
- Dead Beat
- Identification
- PMSM
- RLS
Data inizio appello
20/07/2015
Consultabilità
Completa
Riassunto
The development of fast and powerful microprocessors and Digital Signal Processors (DSPs), have over the last decade increased and extended the application of model predictive control for Power Electronics and Drives.
In permanent magnet synchronous motor drives(PMSM),especially for a Dead-Beat control, accurate knowledge of machine parameters has advantage in its control and/or monitoring its condition.
In this thesis a new method for on-line identification of PMSM parameters for a dead beat current control is proposed.
The on-line adaptation helps tracking any dynamic change in the motor parameters due the enviromental, aging and loading condition. The motor parameters used in the controller can be updated to enhance the performance.
Furthermore a traditional Recoursive least squares method is implemented in this thesis to show the performances.
In permanent magnet synchronous motor drives(PMSM),especially for a Dead-Beat control, accurate knowledge of machine parameters has advantage in its control and/or monitoring its condition.
In this thesis a new method for on-line identification of PMSM parameters for a dead beat current control is proposed.
The on-line adaptation helps tracking any dynamic change in the motor parameters due the enviromental, aging and loading condition. The motor parameters used in the controller can be updated to enhance the performance.
Furthermore a traditional Recoursive least squares method is implemented in this thesis to show the performances.
File
Nome file | Dimensione |
---|---|
Tesi.pdf | 9.95 Mb |
Contatta l’autore |