logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-06102003-155617


Tipo di tesi
Tesi di laurea vecchio ordinamento
Autore
Catania, Davide
URN
etd-06102003-155617
Titolo
Esistenza globale ed esplosione per equazioni delle onde e di Klein-Gordon non lineari
Dipartimento
SCIENZE MATEMATICHE, FISICHE E NATURALI
Corso di studi
MATEMATICA
Relatori
relatore Prof. Gueorguiev, Vladimir Simeonov
Parole chiave
  • equazione delle onde
  • equazione di Klein-Gordon
  • esistenza globale
  • esplosione
  • esponente critico
  • problema di Cauchy
  • stime a priori
Data inizio appello
03/07/2003
Consultabilità
Completa
Riassunto
Proviamo l'esistenza globale della soluzione per un'equazione delle onde non lineare che presenta una singolarità del tipo "tempo ritardato" in un opportuno spazio di Sobolev e sotto l'ipotesi di dati iniziali piccoli a supporto compatto, nel caso di esponente supercritico. Otteniamo questo risultato tramite la dimostrazione di stime a priori, relative alla soluzione esplicita dell'equazione delle onde, che consentono di costruire una contrazione che garantisce l'esistenza della soluzione cercata.

Inversamente, proviamo che nel caso subcritico un'equazione delle onde semilineare con dati iniziali a supporto compatto non ammette soluzioni globali derivabili due volte con continuità. Per farlo, utilizziamo un approccio di tipo funzionale.

Forniamo anche esempi di equazioni di Klein-Gordon semilineari la cui soluzione esiste globalmente. La dimostrazione si basa sul principio di prolungamento della soluzione e sul principio di conservazione dell'energia.
File