logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-06012020-222731


Tipo di tesi
Tesi di laurea magistrale
Autore
SCIURTI, GABRIELE
URN
etd-06012020-222731
Titolo
Development of incremental learning techniques with SVM and MLP neural networks
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
COMPUTER ENGINEERING
Relatori
relatore Prof. Cimino, Mario Giovanni Cosimo Antonio
correlatore Prof.ssa Vaglini, Gigliola
tutor Souded, Malik
Parole chiave
  • incremental learning
  • machine learning
  • neural networks
  • support vector machine
Data inizio appello
22/06/2020
Consultabilità
Non consultabile
Data di rilascio
22/06/2090
Riassunto
Development of incremental learning solutions for predictive algorithms support using vector machine and Multy Layer Perceptrons neural networks. The goal is to find a way to update predictive models using new data without reusing previously used data. It also explores the possibility of teaching models in use classes of previously unrecognized objects. In the part related to neural networks we try to stem the problem of catastrophic forgetting. The results obtained are encouraging as far as the Support Vector Machine is concerned, while the approach used for neural networks has not brought hoped-for results.
File