Tesi etd-05242016-104637 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
PIGATI, ALESSANDRO
URN
etd-05242016-104637
Titolo
New regularity results for sub-Riemannian geodesics
Dipartimento
MATEMATICA
Corso di studi
MATEMATICA
Relatori
relatore Prof. Ambrosio, Luigi
relatore Prof. Vittone, Davide
controrelatore Prof. Magnani, Valentino
relatore Prof. Vittone, Davide
controrelatore Prof. Magnani, Valentino
Parole chiave
- Carnot groups
- Chow-Rashevsky theorem
- Goh conditions
- Hakavuori-Le Donne theorem
- Liu-Sussmann minimality theorem
- normal and abnormal extremals
- Sub-Riemannian manifolds
Data inizio appello
10/06/2016
Consultabilità
Completa
Riassunto
After a brief introduction to sub-Riemannian manifolds, we give a first order classification of geodesics, which can be normal or abnormal, as well as the second order Goh conditions. Explicit examples of strictly abnormal minimizers are provided, using a result by Liu-Sussmann.
We examine closely the model case of Carnot groups, reviewing here a new result by Hakavuori-Le Donne which excludes corner-like singularities. Finally, we obtain an interesting quantitative refinement, which excludes a wider class of singularities in Carnot groups of rank 2.
We examine closely the model case of Carnot groups, reviewing here a new result by Hakavuori-Le Donne which excludes corner-like singularities. Finally, we obtain an interesting quantitative refinement, which excludes a wider class of singularities in Carnot groups of rank 2.
File
Nome file | Dimensione |
---|---|
Pigati_thesis.pdf | 1.05 Mb |
Contatta l’autore |