logo SBA


Digital archive of theses discussed at the University of Pisa


Thesis etd-05242012-212444

Thesis type
Tesi di dottorato di ricerca
Thesis title
A Control-Theoretic Methodology for Adaptive Structured Parallel Computations
Academic discipline
Course of study
tutor Prof. Vanneschi, Marco
  • Autonomic Computing
  • Control Theory
  • Distributed Optimization
  • Game Theory
  • Parallel Programming
  • Skeleton
Graduation session start date
Adaptivity for distributed parallel applications is an essential feature whose impor- tance has been assessed in many research fields (e.g. scientific computations, large- scale real-time simulation systems and emergency management applications). Especially for high-performance computing, this feature is of special interest in order to properly and promptly respond to time-varying QoS requirements, to react to uncontrollable environ- mental effects influencing the underlying execution platform and to efficiently deal with highly irregular parallel problems. In this scenario the Structured Parallel Programming paradigm is a cornerstone for expressing adaptive parallel programs: the high-degree of composability of parallelization schemes, their QoS predictability formally expressed by performance models, are basic tools in order to introduce dynamic reconfiguration processes of adaptive applications. These reconfigurations are not only limited to imple- mentation aspects (e.g. parallelism degree modifications), but also parallel versions with different structures can be expressed for the same computation, featuring different levels of performance, memory utilization, energy consumption, and exploitation of the memory hierarchies.
Over the last decade several programming models and research frameworks have been developed aimed at the definition of tools and strategies for expressing adaptive parallel applications. Notwithstanding this notable research effort, properties like the optimal- ity of the application execution and the stability of control decisions are not sufficiently studied in the existing work. For this reason this thesis exploits a pioneer research in the context of providing formal theoretical tools founded on Control Theory and Game Theory techniques. Based on these approaches, we introduce a formal model for control- ling distributed parallel applications represented by computational graphs of structured parallelism schemes (also called skeleton-based parallelism).
Starting out from the performance predictability of structured parallelism schemes, in this thesis we provide a formalization of the concept of adaptive parallel module per- forming structured parallel computations. The module behavior is described in terms of a Hybrid System abstraction and reconfigurations are driven by a Predictive Control ap- proach. Experimental results show the effectiveness of this work, in terms of execution cost reduction as well as the stability degree of a system reconfiguration: i.e. how long a
reconfiguration choice is useful for targeting the required QoS levels.
This thesis also faces with the issue of controlling large-scale distributed applications composed of several interacting adaptive components. After a panoramic view of the existing control-theoretic approaches (e.g. based on decentralized, distributed or hierar- chical structures of controllers), we introduce a methodology for the distributed predictive control. For controlling computational graphs, the overall control problem consists in a set of coupled control sub-problems for each application module. The decomposition is- sue has a twofold nature: first of all we need to model the coupling relationships between control sub-problems, furthermore we need to introduce proper notions of negotiation and convergence in the control decisions collectively taken by the parallel modules of the application graph. This thesis provides a formalization through basic concepts of Non-cooperative Games and Cooperative Optimization. In the notable context of the dis- tributed control of performance and resource utilization, we exploit a formal description of the control problem providing results for equilibrium point existence and the compari- son of the control optimality with different adaptation strategies and interaction protocols. Discussions and a first validation of the proposed techniques are exploited through exper-
iments performed in a simulation environment.