Tesi etd-05172021-094646 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
RUSSELLO, EMANUELE ANTONIO
URN
etd-05172021-094646
Titolo
Design e prototipazione di un dispositivo microfluidico per lo studio in vitro delle interazioni tra il microbiota intestinale e i tessuti
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
INGEGNERIA BIOMEDICA
Relatori
relatore Prof. Vozzi, Giovanni
correlatore Dott. Biagini, Francesco
controrelatore Prof. De Maria, Carmelo
correlatore Dott. Biagini, Francesco
controrelatore Prof. De Maria, Carmelo
Parole chiave
- dispositivo di microfluidica
Data inizio appello
11/06/2021
Consultabilità
Non consultabile
Data di rilascio
11/06/2091
Riassunto
Il corpo umano è abitato da un'ampia gamma di microrganismi che vengono indicati collettivamente come microbiota umano. Il microbiota ha un ruolo fondamentale nell’equilibrio tra salute e malattia all’interno dell’omeostasi corporea. Mentre i microbi ottengono un habitat e nutrimento dall'ospite, questi a loro volta aiutano l'ospite regolandone le varie funzioni fisiologiche, inclusa la digestione alimentare, impartendo un'immunità protettiva contro i patogeni e producendo metaboliti. Alterazioni nella composizione del microbiota intestinale, chiamate disbiosi, sono associate e correlate a diverse malattie, che spaziano da disordini gastrointestinali localizzati a malattie neurologiche e del sistema respiratorio. Per comprendere i meccanismi di come una condizione di disbiosi influenzi le diverse patologie si è reso necessario uno studio in vitro del microbiota intestinale. Negli ultimi anni sono stati progettati e utilizzati diversi dispositivi di microfluidica come base per lo studio di queste interazioni riproducendo in maniera più fedele l’interfaccia fisiologica tessuto-microbiota. I dispositivi di microfluidica sono sistemi a perfusione che ospitano una o più tipologie cellulari e mirano a riprodurre strutture, funzioni e aspetti chiave del metabolismo umano di un determinato tessuto o organo nella fisiologia normale e patologica. Alla luce di queste considerazioni, nel presente lavoro di tesi è stata progettata e realizzata una piattaforma microfluidica, interamente stampata in 3D, che permette lo studio del microbiota intestinale attraverso la coltura in vitro. Una soluzione a base di Pluronic F127 è stata utilizzata come inchiostro sacrificale per la realizzazione del circuito microfluidico. Inizialmente è stato realizzato un dializzatore che potesse essere utilizzato durante la coltura batterica; successivamente è stata integrata una camera di coltura al dispositivo utilizzando la stessa tecnica di stampa. Insieme a queste due tipologie di dispositivi è stato realizzato anche un frame esterno per la chiusura ermetica. È stato inoltre, impostato un modello agli elementi finiti per valutare il dispositivo progettato da un punto di vista della dialisi e della fluidodinamica coinvolta. La piattaforma ha previsto anche il design di una camera di anaerobiosi ad hoc con il fine di andare a ricreare l’ambiente necessario per la sopravvivenza e la proliferazione batterica. Questo box sensorizzato inoltre, permetterà il collegamento con una camera di coltura cellulare per analizzare i meccanismi di interazione tra il microbiota intestinale e le cellule di altri tessuti dell’ospite.
The human body is inhabited by a wide range of microorganisms that are collectively referred to as the human microbiota. The microbiota plays a key role in the balance between health and disease within the body's homeostasis. While microbes obtain habitat and nourishment from the host, they in turn assist the host by regulating various physiological functions, including food digestion, imparting protective immunity against pathogens, and producing metabolites. Alterations in the composition of the gut microbiota, called dysbiosis, are associated with and related to a variety of diseases, ranging from localized gastrointestinal disorders to neurological and respiratory system diseases. To understand the mechanisms of how a dysbiosis condition affects different diseases, an in vitro study of the gut microbiota has become necessary. In recent years, several microfluidic devices have been designed and used as a basis for the study of these interactions by reproducing more faithfully the physiological tissue-microbiota interface. Microfluidics devices are perfusion systems that host one or more cell types and aim to reproduce key structures, functions and aspects of human metabolism of a given tissue or organ in normal and pathological physiology. In the light of these considerations, in the present thesis work, a microfluidic platform, entirely 3D printed, has been designed and realized to allow the study of the intestinal microbiota through in vitro culture. A Pluronic F127-based solution was used as a sacrificial ink for the realization of the microfluidic circuit. Initially, a dialyzer was made that could be used during bacterial culture; subsequently, a culture chamber was integrated to the device using the same printing technique. Along with these two types of devices, an external frame was also made for hermetic closure. In addition, a finite element model was set up to evaluate the designed device from a dialysis and fluid dynamics involved point of view. The platform has also provided the design of an ad hoc anaerobic chamber in order to recreate the necessary environment for the survival and proliferation of bacteria. This sensorized box will also allow the connection with a cell culture chamber to analyze the mechanisms of interaction between the intestinal microbiota and cells of other tissues of the host.
The human body is inhabited by a wide range of microorganisms that are collectively referred to as the human microbiota. The microbiota plays a key role in the balance between health and disease within the body's homeostasis. While microbes obtain habitat and nourishment from the host, they in turn assist the host by regulating various physiological functions, including food digestion, imparting protective immunity against pathogens, and producing metabolites. Alterations in the composition of the gut microbiota, called dysbiosis, are associated with and related to a variety of diseases, ranging from localized gastrointestinal disorders to neurological and respiratory system diseases. To understand the mechanisms of how a dysbiosis condition affects different diseases, an in vitro study of the gut microbiota has become necessary. In recent years, several microfluidic devices have been designed and used as a basis for the study of these interactions by reproducing more faithfully the physiological tissue-microbiota interface. Microfluidics devices are perfusion systems that host one or more cell types and aim to reproduce key structures, functions and aspects of human metabolism of a given tissue or organ in normal and pathological physiology. In the light of these considerations, in the present thesis work, a microfluidic platform, entirely 3D printed, has been designed and realized to allow the study of the intestinal microbiota through in vitro culture. A Pluronic F127-based solution was used as a sacrificial ink for the realization of the microfluidic circuit. Initially, a dialyzer was made that could be used during bacterial culture; subsequently, a culture chamber was integrated to the device using the same printing technique. Along with these two types of devices, an external frame was also made for hermetic closure. In addition, a finite element model was set up to evaluate the designed device from a dialysis and fluid dynamics involved point of view. The platform has also provided the design of an ad hoc anaerobic chamber in order to recreate the necessary environment for the survival and proliferation of bacteria. This sensorized box will also allow the connection with a cell culture chamber to analyze the mechanisms of interaction between the intestinal microbiota and cells of other tissues of the host.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |