Thesis etd-05162018-094754 |
Link copiato negli appunti
Thesis type
Elaborati finali per laurea triennale
Author
BETTI, ALESSIO
URN
etd-05162018-094754
Thesis title
Il problema della torsione e taglio nelle travi di sezione multicellulare
Department
INGEGNERIA CIVILE E INDUSTRIALE
Course of study
INGEGNERIA CIVILE AMBIENTALE E EDILE
Supervisors
relatore Prof. Valvo, Paolo Sebastiano
correlatore Ing. Taglialegne, Luca
correlatore Ing. Taglialegne, Luca
Keywords
- Teorema di Stokes
- taglio
- sezione pluricellulare
- sezione chiusa di parete sottile
- rigidezza torsionale
- MATLAB
- Formula di Navier
- Formula di Jourawsky
- Formula di Bredt
- flessione composta
- centro di taglio
- analogia idrodinamica
- torsione
- Trave di De Saint Venant
Graduation session start date
09/10/2017
Availability
Full
Summary
La tesi affronta lo studio delle travi di De Saint Venant di sezione chiusa multicellulare. Tale problema trova riscontro in molti ambiti dell’ingegneria, non solo civile: elementi strutturali simili a quelli analizzati sono impiegati dai viadotti ai profili alari, dalle turbine eoliche alle sezioni maestre di imbarcazioni.
La tesi comprende una prima parte teorica, dove si richiamano i risultati principali della Teoria di De Saint Venant, approfondendo gli aspetti più rilevanti per la comprensione del problema in esame, ed una successiva parte applicativa, che affronta la determinazione delle tensioni tangenziali in una sezione triconnessa di acciaio, sollecitata da una forza di taglio composta a torsione.
In particolare, determinate le tensioni tangenziali da taglio applicando la teoria di Jourawsky alla sezione aperta, si è ripristinata la congruenza tramite il Teorema di Stokes, la cui applicazione consente di determinare la distribuzione delle tensioni tangenziali da taglio nelle due maglie costituenti la sezione.
Note le distribuzioni complessive delle tensioni da taglio e le risultanti di sforzo interne, si è determinata la posizione del centro di taglio e l’entità del momento torcente sollecitante.
Quindi, risolvendo un sistema di due equazioni di maglia, una equazione di nodo e una equazione di equilibrio esterno si sono determinate le quattro tensioni tangenziali incognite proprie dello stato torsionale della sezione.
Infine, è stata ricavata la rigidezza torsionale della trave e la distribuzione complessiva delle tensioni.
I risultati numerici della soluzione di tale problema per un caso particolare scelto come esempio sono stati determinati tramite ausilio del software MATLAB.
La tesi comprende una prima parte teorica, dove si richiamano i risultati principali della Teoria di De Saint Venant, approfondendo gli aspetti più rilevanti per la comprensione del problema in esame, ed una successiva parte applicativa, che affronta la determinazione delle tensioni tangenziali in una sezione triconnessa di acciaio, sollecitata da una forza di taglio composta a torsione.
In particolare, determinate le tensioni tangenziali da taglio applicando la teoria di Jourawsky alla sezione aperta, si è ripristinata la congruenza tramite il Teorema di Stokes, la cui applicazione consente di determinare la distribuzione delle tensioni tangenziali da taglio nelle due maglie costituenti la sezione.
Note le distribuzioni complessive delle tensioni da taglio e le risultanti di sforzo interne, si è determinata la posizione del centro di taglio e l’entità del momento torcente sollecitante.
Quindi, risolvendo un sistema di due equazioni di maglia, una equazione di nodo e una equazione di equilibrio esterno si sono determinate le quattro tensioni tangenziali incognite proprie dello stato torsionale della sezione.
Infine, è stata ricavata la rigidezza torsionale della trave e la distribuzione complessiva delle tensioni.
I risultati numerici della soluzione di tale problema per un caso particolare scelto come esempio sono stati determinati tramite ausilio del software MATLAB.
File
Nome file | Dimensione |
---|---|
Tesi_Ten...essio.pdf | 45.75 Mb |
Contatta l’autore |