ETD

Digital archive of theses discussed at the University of Pisa

 

Thesis etd-05102006-235156


Thesis type
Tesi di laurea vecchio ordinamento
Author
Azzarà, Giovanni
email address
giovanni.azza@tele2.it
URN
etd-05102006-235156
Thesis title
Soot predictions for emissions and radiative heat flux calculations in modern gas turbine combustors
Department
INGEGNERIA
Course of study
INGEGNERIA AEROSPAZIALE
Supervisors
relatore D'Agostino, Luca
relatore Paganucci, Fabrizio
relatore Lazzeretti, Renzo
Keywords
  • soot
  • combustors
  • emissions
  • radiative heat fluxes
Graduation session start date
05/06/2006
Availability
Withheld
Release date
05/06/2046
Summary
1 INTRODUCTION
2 THE COMBUSTOR: A GENERAL DESCRIPTION
2.1 GENERAL REQUIREMENTS
2.2 COMBUSTOR TYPES
2.3 COMBUSTOR ANALYSIS
2.3.1 Heat transfer
2.3.2 Radiative fluxes in the walls of the combustors
2.3.3 The film cooling systems
2.4 THE POLLUTANT EMISSIONS IN THE MODERN ENGINES
2.5 THE IMPORTANCE OF SOOT IN THE COMBUSTOR ECONOMY
3 COMPUTATIONAL FLUID DYNAMICS FOR COMBUSTION APPLICATIONS
3.1 INTRODUCTION TO CFD
3.1.1 The flow in the combustion systems: features of Combustor flows
3.1.2 Required predictions from CFD
3.2 MODELLING THE PHYSICS OF TURBULENT FLAMES
3.2.1 The nature of turbulence
3.2.2 A survey of combustion
3.2.3 The equations governing turbulent reacting flows
3.2.4 Turbulence modelling for combustor flows
3.2.5 Combustion modelling for Turbulent Flames
3.2.6 Turbulence-Chemistry interaction: the pdf model
3.3 NUMERICAL CALCULATION METHODS
3.3.1 Generating the computational grid
3.3.2 Discretisation of the Governing Equations
3.3.3 Solution Algorithms
3.3.4 Boundary Conditions
4 INVESTIGATIONS ON PACE CAPABILITIES TO PREDICT SOOT TRENDS IN ADOUR MK951 AND TRENT 500 COMBUSTORS USING DIFFERENT SOOT MODELS
4.1 OBJECTIVES
4.2 SOOT MODELLING
4.3 NUMERICAL MODELS
4.4 LAMINAR FLAMELET
4.5 SOOT MODELS EMPLOYED: A GENERAL SURVEY
4.5.1 In-House soot model
4.5.2 Lund University soot models
4.6 TRENT 500 AND ADOUR MK951: GEOMETRY AND OPERATING CONDITIONS
4.6.1 Trent 500
4.6.2 Adour Mk951
4.6.3 Adour Mk951 and T500: main differences between the two engines
4.7 ANALYSIS OF THE SOOT MODELS RESULTS
4.7.1 Trent 500
4.7.2 Adour Mk951
4.8 INVESTIGATIONS ABOUT GRID DEPENDENCY
4.8.1 Trent 500
4.8.2 Adour Mk951
4.9 CONCLUSIONS
4.10 FUTURE WORK
4.11 NOMENCLATURE
5 INVESTIGATIONS ON PACE CAPABILITIES TO PREDICT THE RADIATIVE HEAT FLUX IN THE COMBUSTORS OF THE ADOUR MK951 AND TRENT 500
5.1 INTRODUCTION
5.1.1 Objectives
5.1.2 Radiation modelling: the DTRM model
5.1.3 Soot influence on the radiative calculation
5.1.4 DTRM model limits
5.1.5 Radiation heat fluxes: analysed formulas
5.2 RADIATIVE HEAT FLUXES
5.2.1 Trent 500
5.2.2 Adour Mk951
5.3 REVISED CORRELATIONS
5.3.1 Trent 500
5.3.2 Adour Mk951
5.3.3 Revised correlations: general formulas
5.4 CONCLUSIONS
5.5 FUTURE WORK
5.6 NOMENCLATURE
6 APPENDIX A
7 APPENDIX B
8 REFERENCES
File