logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-05082024-174758


Tipo di tesi
Tesi di laurea magistrale
Autore
NELLO, ENRICO
URN
etd-05082024-174758
Titolo
On the effectiveness of deepfake detection on multimodal fake news
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
ARTIFICIAL INTELLIGENCE AND DATA ENGINEERING
Relatori
relatore Prof. Cimino, Mario Giovanni Cosimo Antonio
relatore Prof. Falchi, Fabrizio
relatore Prof. Gennaro, Claudio
relatore Dott. Coccomini, Davide Alessandro
Parole chiave
  • computer vision
  • fake news
  • image manipulation
  • multimodal deepfake detection
Data inizio appello
30/05/2024
Consultabilità
Completa
Riassunto
This thesis focuses on deepfake detection within the specific context of fake news, an area of increasing concern in digital media integrity. It firstly enhances the existing Fakeddit fake news dataset by incorporating synthetically generated images, thereby creating a more challenging and comprehensive benchmark for detection algorithms. A comprehensive comparative analysis was then conducted to evaluate the effectiveness of unimodal (image-only) and multimodal (image+text) models in detecting deepfakes. The study compares different architectural frameworks, specifically one based on CLIP and another leveraging ResNet and BERT, to determine which was most effective in this context. Furthermore, the research demonstrates that deepfakes paired with fake news text pose a greater detection challenge compared to those associated with truthful text.
File