Tesi etd-05082023-105614 |
Link copiato negli appunti
Tipo di tesi
Tesi di dottorato di ricerca
Autore
MOLINARI, ALESSIO
URN
etd-05082023-105614
Titolo
Posterior Probabilities, Active Learning, and Transfer Learning in Technology-Assisted Review
Settore scientifico disciplinare
INF/01
Corso di studi
INFORMATICA
Relatori
tutor Dott. Sebastiani, Fabrizio
supervisore Dott. Esuli, Andrea
supervisore Dott. Esuli, Andrea
Parole chiave
- deep learning
- machine learning
- sld
- technology-assisted review
- transfer learning
Data inizio appello
17/05/2023
Consultabilità
Completa
Riassunto
Technology-Assisted Review (TAR) refers to the human-in-the-loop machine learning process whose goal is that of maximizing the cost-effectiveness of a review (i.e., the task of labeling items to satisfy an information need). This thesis explores and thoroughly analyzes: the applicability of the SLD algorithm to TAR scenarios; the usage of active learning combined with the MINECORE framework, effectively improving the framework performance; the portability of machine/deep learning models for the production of systematic reviews in empirical medicine. Finally, the thesis proposes a new algorithm, based on SLD, called SALt, which improves the class prevalence estimates on active learning scenarios, with respect to the current state-of-the-art.
File
Nome file | Dimensione |
---|---|
molinari...hesis.pdf | 5.61 Mb |
Contatta l’autore |