Tesi etd-05042018-143921 |
Link copiato negli appunti
Tipo di tesi
Tesi di dottorato di ricerca
Autore
NOBREGA DE OLIVEIRA LUCENA, RAFAEL
URN
etd-05042018-143921
Titolo
Spectral Gap for Contracting Fiber Systems and Applications
Settore scientifico disciplinare
MAT/01
Corso di studi
SCIENZE DI BASE
Relatori
tutor Prof. Galatolo, Stefano
tutor Prof.ssa Pacifico, Maria José
tutor Prof.ssa Pacifico, Maria José
Parole chiave
- dynamical systems
- ergodic theory
- Lorenz
- spectral Gap
- stability
Data inizio appello
07/10/2015
Consultabilità
Completa
Riassunto
We consider transformations preserving a contracting foliation, such that the associated quotient map satis es a Lasota Yorke inequality. We prove that the associated transfer operator, acting on suitable normed spaces,has spectral gap.
As an application we consider Lorenz-Like two dimensional maps (piecewise hyperbolic with unbounded contraction and expansion rate): we prove that those systems have spectral gap and we show a quantitative estimation for their statistical stability. Under deterministic perturbations of the system, the physical measure varies continuously, with a modulus of continuity O(delta log (delta) ).
As an application we consider Lorenz-Like two dimensional maps (piecewise hyperbolic with unbounded contraction and expansion rate): we prove that those systems have spectral gap and we show a quantitative estimation for their statistical stability. Under deterministic perturbations of the system, the physical measure varies continuously, with a modulus of continuity O(delta log (delta) ).
File
Nome file | Dimensione |
---|---|
tese_RAF..._2015.pdf | 548.80 Kb |
Contatta l’autore |