| Tesi etd-04222009-162105 | 
    Link copiato negli appunti
  
    Tipo di tesi
  
  
    Tesi di dottorato di ricerca
  
    Autore
  
  
    FONTE, ALESSANDRO  
  
    Indirizzo email
  
  
    alessandro.fonte@gmail.com
  
    URN
  
  
    etd-04222009-162105
  
    Titolo
  
  
    RF-CMOS Design of System-on-Chip Microwave Radiometer
  
    Settore scientifico disciplinare
  
  
    ING-INF/01
  
    Corso di studi
  
  
    INGEGNERIA DELL'INFORMAZIONE
  
    Relatori
  
  
    Relatore Dott. Zito, Domenico
Relatore Prof. Neri, Bruno
  
Relatore Prof. Neri, Bruno
    Parole chiave
  
  - CMOS
- radiometer
- RFIC
- SoC
- system-on-chip
    Data inizio appello
  
  
    25/06/2009
  
    Consultabilità
  
  
    Non consultabile
  
    Data di rilascio
  
  
    25/06/2049
  
    Riassunto
  
  In the last few years, due to the impressive advance in silicon process optimization, the system-on-chip integration became much more than a wishful thinking, and most of all it was not only related directly with the data communications but open to many fields of application, from environmental remote sensing to vital-signs contact-less monitoring, from security and antiintrusion imaging systems to collision-avoidance vehicular radar, but to name ones, in which the miniaturization (e.g. wearable electronics, device array, et al.) is expected to provide a new “revolution” of the wireless technology, even larger that the previous one. In the framework of the ongoing trend, well-known system implemented traditionally carried out by using hybrid technologies (i.e. bulky and expensive) has new interesting perspectives ever had earlier. In spite of the difference among the possible applications, all of them can be grouped under the same new discipline, named herein as advanced radio-frequency engineering. In this framework, this work of thesis focuses on the opportunity of exploiting the latest advanced in silicon technology for the implementation of innovative system-on-chip microwave radiometer for the temperature remote sensing and, in particular, to its application to the fire detection. This sensor, due to low power consumption, low weight and low cost, can be successfully used for example to detect a forest fire in its early stage or even to assist the emergency operators in their work, for instance by detecting a fire behind a door or a wall. The most relevant results of the research in these topics are reported, approaching comprehensively for the feasibility study, the design, and the characterization. A low-cost low-power fully-integrated 13-GHz microwave radiometer on silicon has been designed in the 90-nm RF-CMOS process by ST-Microelectronics. In particular, the design of the low noise amplifier, the boot-strapped inductor (the key circuit for the implementation of the low-insertion-loss antenna switch and a low-phase-noise local oscillator), and the voltage controlled oscillator, that are the critical building blocks, are presented.
    File
  
  | Nome file | Dimensione | 
|---|---|
| La tesi non è consultabile. | |
 
		