| Tesi etd-04182024-175520 | 
    Link copiato negli appunti
  
    Tipo di tesi
  
  
    Tesi di dottorato di ricerca
  
    Autore
  
  
    TOSONI, FRANCESCO  
  
    URN
  
  
    etd-04182024-175520
  
    Titolo
  
  
    Computation-friendly compression of matrices and tries
  
    Settore scientifico disciplinare
  
  
    INF/01
  
    Corso di studi
  
  
    INFORMATICA
  
    Relatori
  
  
    tutor Prof. Ferragina, Paolo
correlatore Prof. Manzini, Giovanni
  
correlatore Prof. Manzini, Giovanni
    Parole chiave
  
  - basi dati chiave-valore
- compressione dati ripetitivi
- compressione senza perdita
- dizionari di stringhe
- green computing
- key-value stores
- lossless compression
- matrix-vector multiplications
- moltiplicazioni matrice-vettore
- repetitive data compression
- string dictionaries
- trie
- tries
    Data inizio appello
  
  
    06/05/2024
  
    Consultabilità
  
  
    Non consultabile
  
    Data di rilascio
  
  
    06/05/2027
  
    Riassunto
  
  In this thesis, we continue the research on repetitive data compression by investigating novel general compression schemes that are data-independent. Although we specifically focus on machine learning and key-value systems, we believe that our methods provide insights applicable to a wider range of application domains.
Our proposed methods adapt one-dimensional general-purpose compression tools to handle complex data structures such as matrices, graphs and tries. These schemes effectively capture redundancies and interdependencies among the data, enabling compression that surpasses what can be achieved through sparsity alone, and without compromising the quality metrics such as precision or recall of the resulting models. Following the “computation-friendly” paradigm, our compressed representations allow for direct operations on the compressed data, with time comparable to operations on uncompressed data.
Our proposed methods adapt one-dimensional general-purpose compression tools to handle complex data structures such as matrices, graphs and tries. These schemes effectively capture redundancies and interdependencies among the data, enabling compression that surpasses what can be achieved through sparsity alone, and without compromising the quality metrics such as precision or recall of the resulting models. Following the “computation-friendly” paradigm, our compressed representations allow for direct operations on the compressed data, with time comparable to operations on uncompressed data.
    File
  
  | Nome file | Dimensione | 
|---|---|
| La tesi non è consultabile. | |
 
		