Tesi etd-04172022-222201 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
STRACCA, ELENA
URN
etd-04172022-222201
Titolo
Risk-Aware and Risk-Driven Trajectory Planning for Redundant Manipulators
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
INGEGNERIA ROBOTICA E DELL'AUTOMAZIONE
Relatori
relatore Prof.ssa Pallottino, Lucia
relatore Prof. Salaris, Paolo
tutor Dott. Palleschi, Alessandro
relatore Prof. Salaris, Paolo
tutor Dott. Palleschi, Alessandro
Parole chiave
- fuzzy risk assessment
- human-robot collaboration
- nonlinear optimization
- trajectory planning
Data inizio appello
05/05/2022
Consultabilità
Non consultabile
Data di rilascio
05/05/2092
Riassunto
The purpose of this thesis is to plan and execute trajectories that minimize "the risk" for a serial manipulator operating in a human-robot collaboration context.
The first step is, therefore, to formalize the risk concept, identify which risks we may incur, and create a metric to quantify them.
We then continue by presenting some optimization strategies in the offline trajectory planning phase that lead directly or indirectly to the minimization of the identified risks.
Finally, we simulated the execution of the found trajectories during their actual online execution, developing an interface for online evaluation of the risks indexes and a reactive strategy for online modification of the reference trajectories found during the offline optimization.
The first step is, therefore, to formalize the risk concept, identify which risks we may incur, and create a metric to quantify them.
We then continue by presenting some optimization strategies in the offline trajectory planning phase that lead directly or indirectly to the minimization of the identified risks.
Finally, we simulated the execution of the found trajectories during their actual online execution, developing an interface for online evaluation of the risks indexes and a reactive strategy for online modification of the reference trajectories found during the offline optimization.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |