Tesi etd-04072022-091103 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
VARESI, MARCO
URN
etd-04072022-091103
Titolo
Self-supervised learning for assortment graph embedding
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Bacciu, Davide
correlatore Dott. Trincavelli, Marco
correlatore Dott. Deligiorgis, Georgios
correlatore Dott. Trincavelli, Marco
correlatore Dott. Deligiorgis, Georgios
Parole chiave
- graph
- link prediction
- node classification
- predictive approach
- self-supervised learning
Data inizio appello
22/04/2022
Consultabilità
Tesi non consultabile
Riassunto
Self-supervised learning on graph structured data has seen rapid growth especially centered on augmentation-based contrastive methods. In this thesis, we will propose a self-supervised predictive approach that aims to reconstruct the information of a node using its neighbors. We demonstrate the effectiveness of our approach in both edge-level and node-level task. Our model shows competitive performance in node classification. In link prediction task, our model outperforms self-supervised model from literature.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |