Tesi etd-04012015-151632 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
VALLINI, LORENZO
Indirizzo email
lorenzo.vallini@outlook.com
URN
etd-04012015-151632
Titolo
Static and dynamic analysis of the aerodynamic stability and trajectory simulation of a student sounding rocket.
Dipartimento
INGEGNERIA CIVILE E INDUSTRIALE
Corso di studi
INGEGNERIA AEROSPAZIALE
Relatori
relatore Bach, Christian
relatore D'Agostino, Luca
relatore D'Agostino, Luca
Parole chiave
- accoppiamento del moto di rollio
- active and passive attitude control system
- aerodynamic center
- aerodynamic coefficients
- aerodynamic derivatives
- aerodynamic drag
- aerodynamic stability
- aerodynamic surfaces misalignment
- aeroelasticità
- aeroelasticity
- Agenzia Spaziale Tedesca (DLR)
- ala a delta
- ala aerodinamica
- ala ellittica
- ali di controllo
- Allen
- analisi dell'inclinazione della torre di lancio
- analisi della dispersione
- analisi Montecarlo
- analisi statistica
- analytical method
- angle of attack
- angolo di attacco
- angolo di elevazione
- angolo di lancio
- Ansys Fluent
- apogee
- apogeo
- area di atterraggio
- ASTOS
- attitude disturbance
- axial force
- ballistic trajectory
- banderuola segnavento
- Barrowman
- Base Razzi Mobile (MORABA)
- beccheggio
- Bengen
- boat tail
- bordo d'attacco e d'uscita
- burnout velocity
- Caporaso
- Carbon Fiber Reinforced Polymer (CFRP)
- Catia
- center of gravity or mass
- center of pressure
- centro aerodinamico
- centro di gravità o massa
- centro di pressione
- Centro Spaziale Esrange
- clipped delta fin
- coda
- coefficienti aerodinamici
- combustion chamber offset
- combustion instability
- configurazione con tre o quattro impennaggi
- cono di naso
- control fins
- corpo cilindrico
- correct deployment
- corrective moment
- corretta apertura
- crosswind
- culmination velocity
- cylindrical body
- damping moment
- damping ratio
- Datcom method
- derivate aerodinamiche
- descend velocity
- Deutsches Zentrum für Luft- und Raumfahrt e.V.
- dinamica rotazionale
- disallineamento della spinta propulsiva
- disallineamento delle superfici aerodinamiche di
- dispersion analysis
- dissipazione del getto di gas caldi
- disturbo dell'assetto
- effetti perturbativi
- elevation angle
- elliptical fin
- empirical method
- equazione differenziale del second'ordine
- equazioni di Eulero per il corpo rigido
- Esa
- Esrange Space Center
- etanolo
- ethanol
- Euler equations for the rigid body
- eventi di volo
- Fehskens
- flight events
- flight margin
- flight performance
- flusso subsonico supersonico e transonico
- flutter delle ali
- forza assiale
- forza normale
- free turbulence
- frequenza naturale
- Galejs
- German Aerospace Center (DLR)
- Glass Reinforced Plastic (GRP)
- gravity turn
- groundtrack
- horizontal wind
- hot gaseous jet damping
- imbardata
- impact velocity
- induced drag
- instabilità di combustione
- interference drag
- Jorgensen
- Kiruna
- laminar and turbulent boundary layer
- lancio verticale
- landing area
- launch angle
- launch requirements
- launch site
- launch tower tilting analysis
- leading and trailing edge
- lift
- liquid oxigen LOX
- liquid propellant rocket
- Mach
- main and drogue chute
- Malewicki
- Mandell
- margine di stabilità
- margini di sicurezza
- margini di volo
- materiali fibrorinforzati a matrice polimerica
- metodo analitico
- metodo Datcom
- metodo empirico
- mission specifications
- Mobile Raketenbasis (MORABA)
- Mobile Rocket Base (MORABA)
- momento correttivo
- momento d'inerzia longitudinale e radiale
- momento dissipativo
- Montecarlo analysis
- natural frequency
- non costanti
- non homogeneous second order diff. eq.
- normal force
- nose cone
- numero di Reynolds
- offset della camera di combustione
- Open Rocket
- oscillazione dell'asse verticale
- ossigeno liquido LOX
- paracadute principale e pilota
- parasitic drag
- perturbation
- perturbazione
- perturbing effects
- pitch
- planform
- ponderazione del vento
- portanza
- pressure drag
- prestazione di volo
- progetto STERN
- punto di separazione
- radial and longitudinal moment of inertia
- razzo a propulsione liquida
- recovery system
- requisiti di lancio
- residence and transit time of the propellants
- resistenza aerodinamica
- resistenza d'interferenza
- resistenza di pressione
- resistenza indotta
- resistenza parassita
- resistenza viscosa o attrito
- resonance
- Reynolds number
- risonanza
- Rocksim
- roll
- rolling motion coupling
- rollio
- rotational dynamics
- rotazione per gravità
- safety margin
- second order system
- semiapertura alare
- semispan
- separation point
- sistema del second'ordine
- sistema di controllo attivo e passivo dell'asset
- sistema di recupero
- sito di lancio
- SMART Rockets Project (SPR)
- Società Spazio Svedese (SSC)
- Solidworks
- sopra e sottovento
- specifiche di missione
- stabilità aerodinamica
- stability margin
- statistical analysis
- STERN project
- Stine
- strato limite laminare e turbolento
- streamlined fin
- subsonic transonic and supersonic flow
- superficie alare
- Swedish Space Corporation (SSC)
- tasso di smorzamento
- Technische Universitat Dresden
- tempo di residenza e transito propellente
- three- or four-fins configuration
- thrust misalignment
- traccia a terra
- traiettoria balistica
- transition
- transizione
- turbolenza libera
- Università Tecnica Dresda
- up- and downwind
- velocità alla culminazione
- velocità allo spegnimento del motore
- velocità di discesa
- velocità di impatto
- vento di traverso
- vento orizzontale
- vertical axis oscillation
- vertical launch
- vetroresina (GRP)
- viscous drag or friction
- weathercock
- wind weighting
- wings flutter
- Wolfram Mathematica
- yaw
Data inizio appello
28/04/2015
Consultabilità
Completa
Riassunto
Scope of this thesis is the analysis and validation of the aerodynamics of the SMART rocket from the point of view of both the aerodynamic stability and trajectory. The rocket summarizes the contribution of the Technical University (Technische Universitat) Dresden to the STudentische Experimental-RaketeN (STERN) program, promoted by the German Space Administration (DLR). In the first part of this work, all the possible disturbances commonly affecting the rocket during its atmospheric flight are modeled in an analytical fashion. These include thrust vector misalignments and offsets, combustion instabilities, fins misalignments and presence of wind. Then these perturbing terms are considered inside properly defined models able to provide the response of the vehicle in terms of the time evolution of its vertical axis deflection with respect to the velocity direction, i.e. the time profile of the angle of attack. In this way the aerodynamic stability of the any uncontrolled rocket could be possibly studied from both the static and dynamic point of view. The previous models are applied to the actual state of the SMART rocket and the most critical types of disturbance are identified with the related safety margins. Subsequently a design procedure is developed to define a new aerodynamics able to extend the most critical of the previous margins. This procedure is based on the study of the most important quantities related to the aerodynamic stability problem as a function of a properly defined set of geometrical parameters. These parameters are directly related with the aerodynamic shape of the rocket fins. The optimum which results in the best compromize between the vehicle response to all the previous disturbances is so evaluated and considered in the subsequent trajectory validation. This is realized by means of the ASTOS software, a powerful mission and system analysis and optimization program funded by the European Space Research and Technology Center (ESA/ESTEC). This program has been used both to verify the previous analytical response regarding the vehicle aerodynamic stability and to validate the trajectory of the updated configuration of the SMART rocket. Both 3 dof and 6 dof vertical and non-vertical analysis with and without perturbations have been simulated. The results are compared with those provided by dedicated analytical models whenever is possible. In conclusion the updated configuration obtained from the analytical design results to be the optimum one able to satisfy the imposed requirements in terms of minimum altitudes and maximum culmination velocities with any type of disturbance.
File
Nome file | Dimensione |
---|---|
TesiFin.pdf | 7.01 Mb |
Contatta l’autore |