logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-04012012-191535


Tipo di tesi
Tesi di laurea specialistica
Autore
DEGIORGI, MARCO
URN
etd-04012012-191535
Titolo
Tecniche ibride ed asintotiche per il calcolo dello scattering elettromagnetico da superfici di grandi dimensioni
Dipartimento
INGEGNERIA
Corso di studi
INGEGNERIA DELLE TELECOMUNICAZIONI
Relatori
relatore Prof. Manara, Giuliano
relatore Prof. Monorchio, Agostino
Parole chiave
  • scattering elettromagnetico
  • superfici di grandi dimensioni
  • tecniche asintotiche
  • tecniche ibride
Data inizio appello
23/04/2012
Consultabilità
Parziale
Data di rilascio
23/04/2052
Riassunto
Sviluppo di nuovi algoritmi efficienti per il calcolo dello scattering elettromagnetico da superfici piane di grandi dimensioni.

In recent years, the topic of efficient and accurate solution of the electromagnetic scattering problems from electrically large bodies has drawn increasing attention. The Method of Moments(MoM)-based procedures are widely used for this task, but they place a heavy burden on the CPU time as well as memory requirements when electrically large structures are.
Recently, the Characteristic Basis Function (CBF) technique and its analytical version, namely the High-Frequency Integral Equation method, have been introduced for an efficient solution of electromagnetic scattering problems from complex bodies.
We present an approach based on a Singular Value Decomposition (SVD) procedure for constructing sets of universal basis functions derived from Physical Optics, for solving the electromagnetic scattering from faceted bodies . These basis functions can be constructed avoiding any MoM-type approach and can be used for any direction of propagation of the illuminating wave; moreover, their use leads to a coefficient matrix with relatively small dimensions.
The method enables us to solve scattering problems in a computationally efficient and numerically rigorous manner, and yields good results both for 2D and 3D problems.
File