| Tesi etd-03262024-221800 | 
    Link copiato negli appunti
  
    Tipo di tesi
  
  
    Tesi di laurea magistrale
  
    Autore
  
  
    PROFUMO, DOMENICO  
  
    URN
  
  
    etd-03262024-221800
  
    Titolo
  
  
    Quantized Convolutional Neural Networks for Real-Time Vehicle Tracking
  
    Dipartimento
  
  
    INFORMATICA
  
    Corso di studi
  
  
    INFORMATICA
  
    Relatori
  
  
    relatore Prof. Bacciu, Davide
relatore Prof. Licitra, Gaetano
relatore Ing. D'Alessandro, Francesco
  
relatore Prof. Licitra, Gaetano
relatore Ing. D'Alessandro, Francesco
    Parole chiave
  
  - convolutional neural network
- noise pollution
- quantization
- real-time
- traffic flow
- vehicle tracking
    Data inizio appello
  
  
    12/04/2024
  
    Consultabilità
  
  
    Non consultabile
  
    Data di rilascio
  
  
    12/04/2027
  
    Riassunto
  
  Traffic flow and speed are among the most important parameters needed to be estimated when studying noise pollution. In this thesis, a real-time multiple-vehicle recognition system was developed using a low-cost system consisting of a quantized convolutional network with a tracking algorithm, capable of counting the amount of vehicles passing through and their associated acceleration and speed information.
The results obtained through the proposed methodology provide a low-cost but yet powerful tool for the corresponding authorities involved in the task of noise pollution assessment.
The results obtained through the proposed methodology provide a low-cost but yet powerful tool for the corresponding authorities involved in the task of noise pollution assessment.
    File
  
  | Nome file | Dimensione | 
|---|---|
| La tesi non è consultabile. | |
 
		