logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-03262024-221800


Tipo di tesi
Tesi di laurea magistrale
Autore
PROFUMO, DOMENICO
URN
etd-03262024-221800
Titolo
Quantized Convolutional Neural Networks for Real-Time Vehicle Tracking
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Bacciu, Davide
relatore Prof. Licitra, Gaetano
relatore Ing. D'Alessandro, Francesco
Parole chiave
  • convolutional neural network
  • noise pollution
  • quantization
  • real-time
  • traffic flow
  • vehicle tracking
Data inizio appello
12/04/2024
Consultabilità
Non consultabile
Data di rilascio
12/04/2027
Riassunto
Traffic flow and speed are among the most important parameters needed to be estimated when studying noise pollution. In this thesis, a real-time multiple-vehicle recognition system was developed using a low-cost system consisting of a quantized convolutional network with a tracking algorithm, capable of counting the amount of vehicles passing through and their associated acceleration and speed information.
The results obtained through the proposed methodology provide a low-cost but yet powerful tool for the corresponding authorities involved in the task of noise pollution assessment.
File