Tesi etd-03262024-221800 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
PROFUMO, DOMENICO
URN
etd-03262024-221800
Titolo
Quantized Convolutional Neural Networks for Real-Time Vehicle Tracking
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Bacciu, Davide
relatore Prof. Licitra, Gaetano
relatore Ing. D'Alessandro, Francesco
relatore Prof. Licitra, Gaetano
relatore Ing. D'Alessandro, Francesco
Parole chiave
- convolutional neural network
- noise pollution
- quantization
- real-time
- traffic flow
- vehicle tracking
Data inizio appello
12/04/2024
Consultabilità
Non consultabile
Data di rilascio
12/04/2027
Riassunto
Traffic flow and speed are among the most important parameters needed to be estimated when studying noise pollution. In this thesis, a real-time multiple-vehicle recognition system was developed using a low-cost system consisting of a quantized convolutional network with a tracking algorithm, capable of counting the amount of vehicles passing through and their associated acceleration and speed information.
The results obtained through the proposed methodology provide a low-cost but yet powerful tool for the corresponding authorities involved in the task of noise pollution assessment.
The results obtained through the proposed methodology provide a low-cost but yet powerful tool for the corresponding authorities involved in the task of noise pollution assessment.
File
Nome file | Dimensione |
---|---|
La tesi non è consultabile. |