Tesi etd-03252023-110017 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
PELLICCIA, DAVID
URN
etd-03252023-110017
Titolo
Implementation of machine learning methods for object recognition with multimodal sensing through a soft-gripper.
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Falotico, Egidio
relatore Dott. Donato, Enrico
relatore Dott. Donato, Enrico
Parole chiave
- machine learning
- multimodal sensing
- object recognition
- soft-gripper
Data inizio appello
14/04/2023
Consultabilità
Non consultabile
Data di rilascio
14/04/2063
Riassunto
The compliance and deformability of soft grippers allow adaptation to heterogeneous objects in shape and size. This work aims to achieve an active object picking, that exploits proprioception and contact sensing to perform object recognition. To this end, an LSTM learning model has been proposed as an alternative to state-of-the-art methods, achieving comparable performance both on a physical simulation and on a commercial artefact to recognize more than fifteen objects that differ in shape and size. We have also investigated the importance of sensory multimodality rather than a single source of information, how sensors’ spatial patterns and temporal dependencies influence the overall estimation, and the minimum training set of grasps per object to achieve good learning generalisation.
File
Nome file | Dimensione |
---|---|
La tesi non è consultabile. |