logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-03242014-075306


Tipo di tesi
Tesi di laurea magistrale
Autore
AGOSTINI, DANIELE
URN
etd-03242014-075306
Titolo
Asymptotic syzygies of algebraic varieties
Dipartimento
MATEMATICA
Corso di studi
MATEMATICA
Relatori
relatore Prof. Ottaviani, Giorgio
Parole chiave
  • asymptotic normality
  • betti numbers
  • cohomology
  • homogeneous bundles
  • quivers
  • syzygies
Data inizio appello
23/05/2014
Consultabilità
Completa
Riassunto
The purpose of this thesis is to expose some results relative to the asymptotic behaviour of the graded Betti numbers of algebraic varieties, as the positivity of the embedding grows.

The first part presents the basic definitions and results relative to to the language of graded Betti numbers and Koszul cohomology.

The second part is dedicated to the recent results of L. Ein and R. Lazarsfeld relative to the asymtpotic shape of the Betti table of a positive embedding of a smooth variety, and to the conjecture of L. Ein, D. Erman and R. Lazarsfeld of the asymptotic normality of the Betti numbers.

The third part specializes the problem to that of Betti numbers of Veronese embeddings for the projective plane, and presents a technique for computing the graded Betti numbers using representation theory.

The appendix recalls some results on algebraic groups, in particular representations of SL(n).
File