Tesi etd-03222022-131206 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
MEDIOLI, MATTEO
URN
etd-03222022-131206
Titolo
Regularizing Transformers by symbolic knowledge and Deep Graph Networks
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Bacciu, Davide
correlatore Valenti, Andrea
supervisore Passaro, Lucia C.
correlatore Valenti, Andrea
supervisore Passaro, Lucia C.
Parole chiave
- Bert
- Deep Graph Networks
- embeddings regression
- Graph Attention Network
- language modeling
- node-embeddings
- symbolic knowledge
- Transformers
- word-embeddings
Data inizio appello
22/04/2022
Consultabilità
Tesi non consultabile
Riassunto
In recent years, Deep Graph Networks (DGNs) have proven to be one of the state-of-art for representation learning for graphs. This thesis focuses on using Graph Attention Network embeddings to regularize the Transformers model, specifically BERT. The word-embeddings learned during BERT's Masked Language Modeling are regularized to combine symbolic knowledge of Knowledge Graphs. This work evaluates the quality of graph-regularized word-embeddings concerning the baseline through word-embeddings probing tasks.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |