logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-03212022-125851


Tipo di tesi
Tesi di laurea magistrale
Autore
POGGIALI, ALESSANDRO
URN
etd-03212022-125851
Titolo
Quantum clustering with k-means
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof.ssa Bernasconi, Anna
relatore Prof.ssa Del Corso, Gianna Maria
relatore Prof. Guidotti, Riccardo
Parole chiave
  • algorithm
  • clustering
  • k-means
  • quantum
Data inizio appello
22/04/2022
Consultabilità
Completa
Riassunto
In this thesis we face the problem of clustering with the aim of designing a
quantum version of the well-known k-means algorithm. The k-means clustering
algorithm is an unsupervised learning algorithm and its goal is to find natural groups
of elements in a data set, so that elements inside a group are more similar to each
other than elements in another group, according to a specific distance measure.
Building a quantum version of that algorithm means creating a quantum circuit
which takes classical data as input and it exploits quantum gates to perform the
computation, satisfying all the quantum mechanical constraints. The thesis provides a step by step quantization of the classical algorithm, showing advantages in terms of theoretical complexity.
File