Tesi etd-03092015-203625 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
TAMBURELLI, ANDREA
URN
etd-03092015-203625
Titolo
A vanishing result for \ell^{2}-Betti numbers in terms of the integral foliated simplicial volume
Dipartimento
MATEMATICA
Corso di studi
MATEMATICA
Relatori
relatore Prof. Frigerio, Roberto
Parole chiave
- Simplicial Volume
- \ell^{2}-Betti numbers
Data inizio appello
17/04/2015
Consultabilità
Completa
Riassunto
The integral foliated simplicial volume is a version of simplicial volume combining the rigidity of integral coefficients with the flexibility of measure spaces. It was introduced by Gromov to estimate the \ell^{2}-Betti numbers of a closed, connected, oriented manifold.
In this thesis we will define these notions and prove a recent result by Schmidt relating the vanishing of the integral foliated simplicial volume to the vanishing of \ell^{2}-Betti numbers.
In this thesis we will define these notions and prove a recent result by Schmidt relating the vanishing of the integral foliated simplicial volume to the vanishing of \ell^{2}-Betti numbers.
File
Nome file | Dimensione |
---|---|
Abstract.pdf | 140.82 Kb |
Tesi_Vol...liato.pdf | 754.47 Kb |
Contatta l’autore |