Tesi etd-02242020-231541 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
GRANDO, DEBORA
URN
etd-02242020-231541
Titolo
Data-driven models and random generators of rainfall
Dipartimento
MATEMATICA
Corso di studi
MATEMATICA
Relatori
relatore Prof. Romito, Marco
relatore Prof. Lakkis, Omar
relatore Prof. Lakkis, Omar
Parole chiave
- Rainfall
Data inizio appello
13/03/2020
Consultabilità
Completa
Riassunto
The aim of this thesis is studying rainfall models, capable of simulating rainfall data to serve as input for a general model aimed at the evaluation of the hydrogeological risk. A space-time model for rainfall is first analysed in detail and it is subsequently generalized by mean of Hidden Markov Models. Different techinques for fitting the new model to data are presented in theory: maximum likelihood estimation through the Expectation Mazimization algorithm and Approximate Bayesian Computation. They are then tested and applied in numerical simulations.
File
Nome file | Dimensione |
---|---|
Tesi.pdf | 2.33 Mb |
Contatta l’autore |