Tesi etd-02172013-082018 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea specialistica
Autore
PALAZZO, SIMONE
URN
etd-02172013-082018
Titolo
Application of Advanced Thermal-Hydraulic Simulation Codes for the Analysis of Heavy Liquid Metal Flows in the ADS Reactor Concept MYRRHA
Dipartimento
INGEGNERIA DELL'ENERGIA, DEI SISTEMI, DEL TERRITORIO E DELLE COSTRUZIONI
Corso di studi
INGEGNERIA ENERGETICA
Relatori
relatore Prof. Ambrosini, Walter
relatore Dott. Papukchiev, Angel
relatore Dott. Velkov, Kiril
relatore Lerchl, Georg
relatore Dott. Papukchiev, Angel
relatore Dott. Velkov, Kiril
relatore Lerchl, Georg
Parole chiave
- ANSYS CFX
- ATHLET
- Coupled code technique
- Lead-Bismuth Eutectic (LBE)
- MYRRHA reactor
- Spallation loop
Data inizio appello
19/04/2013
Consultabilità
Parziale
Data di rilascio
19/04/2053
Riassunto
Il codice termoidraulico di sistema ATHLET è stato sviluppato negli ultimi decenni dall’istituto di ricerca GRS (Gesellschaft für Anlagen- und Reaktorsicherheit) con l’obiettivo di facilitare e migliorare l’analisi della progettazione di base e della gestione dei reattori nucleari PWR e BWR. Recentemente è stata rilasciata una nuova versione del codice ATHLET, nella quale sono state implementate le proprietà fisiche, nonché le correlazioni di scambio termico convettivo di refrigeranti innovativi come elio, sodio, piombo e lega eutettica piombo-bismuto (LBE). Tale sviluppo consente di estendere le capacità del codice ATHLET all’analisi del comportamento termoidraulico dei futuri reattori nucleari appartenenti alla IV generazione.
Inoltre, ATHLET è stato accoppiato con il codice di fluidodinamica computazionale (CFD) ANSYS CFX al fine di migliorarne le capacità di simulazione in regioni particolari del circuito di refrigerazione nel caso di flussi affetti da evidenti fenomeni tridimensionali, come ad esempio miscelazione o stratificazione termica.
Nel presente lavoro di tesi, la nuova metodologia di accoppiamento tra il codice di sistema ATHLET ed il codice di CFD ANSYS CFX è stata applicata all’analisi del circuito di spallazione del reattore sperimentale MYRRHA, appartenente alla categoria dei reattori sottocritici di tipo ADS. Tale reattore ha tra i suoi obiettivi quello di permettere uno studio approfondito sulla trasmutazione efficiente delle scorie nucleari a più alto livello di radiotossicità.
Nello specifico, le potenzialità del codice ANSYS CFX sono state sfruttate per simulare la zona più complessa dal punto di vista fluidodinamico dell’intero circuito di spallazione, vale a dire il target ”windowless”. La restante parte del circuito è stata invece simulata mediante il codice ATHLET.
In questo studio è stata eseguita una prima simulazione utilizzando la tecnica di accoppiamento tra i codici ATHLET e ANSYS CFX allo scopo di verificare il corretto scambio di dati tra i due codici. A tal scopo è stato simulato in condizioni transitorie un semplice tubo con all’interno LBE come fluido refrigerante.
In seguito, si è passati ad analizzare una configurazione semplificata del circuito di spallazione, in cui è stata simulata la sola zona del target. L’obiettivo è stato quello di verificare la stabilità della superficie conica di LBE, che rappresenta il bersaglio di spallazione, al variare della portata in ingresso alla regione del target.
Le difficoltà legate al raggiungimento di un corretto bilancio della massa di LBE all’interno del dominio CFD durante i transitori incidentali simulati hanno reso necessaria una leggera modifica nella nodalizzazione ATHLET prima di iniziare la simulazione della configurazione ad anello chiuso. Le simulazioni di transitori con variazione rapida di portata in quest’ultima configurazione sono state eseguite agendo sulla velocità di rotazione della pompa. Nonostante la presenza delle due superfici libere di LBE abbia influenzato la conservazione della massa all’interno del dominio CFD durante le simulazioni transitorie, i risultati ottenuti con i codici accoppiati ATHLET – ANSYS CFX confermano la stabilità della superficie conica del target al variare della portata di LBE nel sistema, nonché la funzionalità dello schema numerico di accoppiamento.
Inoltre, ATHLET è stato accoppiato con il codice di fluidodinamica computazionale (CFD) ANSYS CFX al fine di migliorarne le capacità di simulazione in regioni particolari del circuito di refrigerazione nel caso di flussi affetti da evidenti fenomeni tridimensionali, come ad esempio miscelazione o stratificazione termica.
Nel presente lavoro di tesi, la nuova metodologia di accoppiamento tra il codice di sistema ATHLET ed il codice di CFD ANSYS CFX è stata applicata all’analisi del circuito di spallazione del reattore sperimentale MYRRHA, appartenente alla categoria dei reattori sottocritici di tipo ADS. Tale reattore ha tra i suoi obiettivi quello di permettere uno studio approfondito sulla trasmutazione efficiente delle scorie nucleari a più alto livello di radiotossicità.
Nello specifico, le potenzialità del codice ANSYS CFX sono state sfruttate per simulare la zona più complessa dal punto di vista fluidodinamico dell’intero circuito di spallazione, vale a dire il target ”windowless”. La restante parte del circuito è stata invece simulata mediante il codice ATHLET.
In questo studio è stata eseguita una prima simulazione utilizzando la tecnica di accoppiamento tra i codici ATHLET e ANSYS CFX allo scopo di verificare il corretto scambio di dati tra i due codici. A tal scopo è stato simulato in condizioni transitorie un semplice tubo con all’interno LBE come fluido refrigerante.
In seguito, si è passati ad analizzare una configurazione semplificata del circuito di spallazione, in cui è stata simulata la sola zona del target. L’obiettivo è stato quello di verificare la stabilità della superficie conica di LBE, che rappresenta il bersaglio di spallazione, al variare della portata in ingresso alla regione del target.
Le difficoltà legate al raggiungimento di un corretto bilancio della massa di LBE all’interno del dominio CFD durante i transitori incidentali simulati hanno reso necessaria una leggera modifica nella nodalizzazione ATHLET prima di iniziare la simulazione della configurazione ad anello chiuso. Le simulazioni di transitori con variazione rapida di portata in quest’ultima configurazione sono state eseguite agendo sulla velocità di rotazione della pompa. Nonostante la presenza delle due superfici libere di LBE abbia influenzato la conservazione della massa all’interno del dominio CFD durante le simulazioni transitorie, i risultati ottenuti con i codici accoppiati ATHLET – ANSYS CFX confermano la stabilità della superficie conica del target al variare della portata di LBE nel sistema, nonché la funzionalità dello schema numerico di accoppiamento.
File
Nome file | Dimensione |
---|---|
Abbreviations.pdf | 347.75 Kb |
Abstract.pdf | 224.94 Kb |
Acknowledgements.pdf | 238.30 Kb |
Frontespizio.pdf | 244.05 Kb |
List_of_Figures.pdf | 292.38 Kb |
List_of_Tables.pdf | 235.58 Kb |
Sommario.pdf | 246.64 Kb |
Table_of...tents.pdf | 317.37 Kb |
6 file non consultabili su richiesta dell’autore. |