Tesi etd-02132017-114058 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea specialistica
Autore
PODDA, MARCO
URN
etd-02132017-114058
Titolo
Predicting mortality in low birth-weight infants: a machine learning perspective
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Micheli, Alessio
relatore Dott. Bacciu, Davide
controrelatore Prof.ssa Bernasconi, Anna
relatore Dott. Bacciu, Davide
controrelatore Prof.ssa Bernasconi, Anna
Parole chiave
- cross-validation
- models
- network
- oxford
- predictions
- preprocessing
- roc
- vermont
- von
Data inizio appello
03/03/2017
Consultabilità
Completa
Riassunto
Mortality predictions of low and very low birth-weight infants using logistic regression models are widely used in risk adjustment procedures for comparing different NICUs (Neonatal Intensive Care Units).
We tackled this problem from a machine learning point of view by training state-of-the-art supervised models for the task. Furthermore, we used unsupervised techniques to provide clinicians with new insights on the matter that could ultimately lead to new improvements.
We tackled this problem from a machine learning point of view by training state-of-the-art supervised models for the task. Furthermore, we used unsupervised techniques to provide clinicians with new insights on the matter that could ultimately lead to new improvements.
File
Nome file | Dimensione |
---|---|
ThesisPodda.pdf | 4.23 Mb |
Contatta l’autore |