Tesi etd-02082023-174254 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
FARHANG DOUST, SINA
URN
etd-02082023-174254
Titolo
Legal Text Classification by Graph Neural Networks and Knowledge Distillation
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Bacciu, Davide
correlatore De Mattei, Lorenzo
correlatore De Mattei, Lorenzo
Parole chiave
- Bert
- graph attention networks
- graph convolutional networks
- graph neural networks
- knowledge distillation
- legal classifier
- transformers
Data inizio appello
24/02/2023
Consultabilità
Completa
Riassunto
Automated text classification is a task of high relevance in digital applications to the legal field. In this thesis, we addressed the problem of developing an automated legal text classifier leveraging a blend of machine learning techniques including graph neural networks and knowledge distillation. The resulting system can help streamline the legal document review process, reducing the time and effort required for manual categorization and improving the accuracy and consistency of the results. The challenges and limitations of building an automated legal text classifier, including the need for high-quality annotated data and the complexities of the legal domain, are also discussed.
File
Nome file | Dimensione |
---|---|
Thesis_S...Doust.pdf | 8.48 Mb |
Contatta l’autore |