| Tesi etd-02052024-183745 | 
    Link copiato negli appunti
  
    Tipo di tesi
  
  
    Tesi di laurea magistrale
  
    Autore
  
  
    DI VIRGILIO, DAVIDE  
  
    URN
  
  
    etd-02052024-183745
  
    Titolo
  
  
    From Hikari-2021 Dataset to an Intrusion Detection Model
  
    Dipartimento
  
  
    INFORMATICA
  
    Corso di studi
  
  
    DATA SCIENCE AND BUSINESS INFORMATICS
  
    Relatori
  
  
    relatore Prof. Baiardi, Fabrizio
tutor Dott. Gatta, Marco
  
tutor Dott. Gatta, Marco
    Parole chiave
  
  - classification
- data mining
- data science
- intrusion detection model
- machine learning
- network traffic analysis
    Data inizio appello
  
  
    23/02/2024
  
    Consultabilità
  
  
    Non consultabile
  
    Data di rilascio
  
  
    23/02/2064
  
    Riassunto
  
  The document outlines the creation and analysis of a dataset named Hikari-2021, focusing on generating network data for cybersecurity purposes. After describing the methodology for dataset generation and various traffic profiles (background traffic, benign profile, and attacker profile), it delves into data preparation processes, including data understanding, cleaning, outlier detection, and feature selection. The issue of learning from imbalanced data is also addressed. The classification phase involves various techniques, including cross-validation and hyperparameter tuning for boosting algorithms such as Gradient Boosting, XGBoost, and bagging techniques like Random Forest. Finally, the last chapter discusses evaluation metrics and classifier performance.
    File
  
  | Nome file | Dimensione | 
|---|---|
| La tesi non è consultabile. | |
 
		