logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-02042020-160305


Tipo di tesi
Tesi di laurea magistrale
Autore
CRISCIONE, MARTINA
URN
etd-02042020-160305
Titolo
Design and Implementation of an Adaptive Fuzzy Density-based Clustering Algorithm for Streaming data
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
COMPUTER ENGINEERING
Relatori
relatore Prof. Marcelloni, Francesco
relatore Prof. Ducange, Pietro
correlatore Dott. Renda, Alessandro
Parole chiave
  • Adaptive parameters
  • Data stream
  • Density-based clustering
Data inizio appello
21/02/2020
Consultabilità
Non consultabile
Data di rilascio
21/02/2090
Riassunto
This thesis work concerns the study of an adaptive fuzzy density-based clustering algorithm for data streams. Unlike the static case, the streaming scenario is characterized by a continuous and potentially infinite flow of incoming data, produced nowadays by a myriad of software applications and hardware platforms.
A crucial aspect of the streaming setting is the concept drift that consists of a change in the distribution of the data over time. Starting from an existing implementation, which also takes advantage of fuzziness to more appropriately model cluster borders, we develop an approach that can manage concept drift by adapting clustering algorithm parameters to the evolution of the data stream. Efficiency and effectiveness of the proposed approach are evaluated on synthetic and on high-dimensional real-world data streams.
File