Tesi etd-02022015-155548 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
GRAZIANO, ALESSANDRO
Indirizzo email
ale.graziano15@gmail.com
URN
etd-02022015-155548
Titolo
Robust visual hand pose estimation and tracking matching inverse kinematics on synergistic subspaces
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
INGEGNERIA ROBOTICA E DELL'AUTOMAZIONE
Relatori
relatore Avizzano, Carlo Alberto
relatore Pollini, Lorenzo
relatore Prof. Ruffaldi, Emanuele
relatore Pollini, Lorenzo
relatore Prof. Ruffaldi, Emanuele
Parole chiave
- Nessuna parola chiave trovata
Data inizio appello
19/02/2015
Consultabilità
Non consultabile
Data di rilascio
19/02/2085
Riassunto
In this thesis a solution to the problem of recovering and tracking the 3D position, orientation and full articulation of a human hand from markerless visual observations obtained with a range camera is developed. The 3D tracking of human hands has a number of diverse applications including but not limited to human activity recognition, human-computer interaction, understanding human grasping, robot learning by demonstration , etc.
The method is based on an inverse kinematics scheme. The high dimensionality of the estimation problem is reduced by using the PCA (Principal Component Analisys) on a large dataset of human hand poses. The proposed method does not require special markers and/or a complex image acquisition setup. Being model based, it provides a continuous solution to the problem of tracking hand articulations.
The method is based on an inverse kinematics scheme. The high dimensionality of the estimation problem is reduced by using the PCA (Principal Component Analisys) on a large dataset of human hand poses. The proposed method does not require special markers and/or a complex image acquisition setup. Being model based, it provides a continuous solution to the problem of tracking hand articulations.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |