Tesi etd-01182016-121436 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
CODENOTTI, GIULIA
URN
etd-01182016-121436
Titolo
Relative Kruskal-Katona theorem
Dipartimento
MATEMATICA
Corso di studi
MATEMATICA
Relatori
relatore Prof. Sanyal, Raman
correlatore Prof. Dvornicich, Roberto
correlatore Prof. Dvornicich, Roberto
Parole chiave
- f-vectors
- Kruskal-Katona Theorem
- Macaulay Theorem
- relative multicomplexes
- relative simplicial complexes
Data inizio appello
05/02/2016
Consultabilità
Completa
Riassunto
The focus of this work is studying f-vectors in a relative setting. The Kruskal-Katona theorem is a fundamental theorem in Combinatorics which characterizes f-vectors of simplicial complexes. A similar theorem for multicomplexes is the Macauley theorem, which also has a very natural formulation in terms of Hilbert functions of standard graded K-algebras. In my thesis I consider the question of characterizing f-vectors of relative simplicial complexes. A relative simplicial complex is a collection of sets given as the set-theoretic difference between a simplicial complex and a subcomplex. I obtain combinatorial and algebraic generalizations of the Kruskal-Katona and Macaulay characterizations under certain conditions on the number of vertices of simplicial complexes constituting the relative complex.
File
Nome file | Dimensione |
---|---|
thesis_3.pdf | 458.29 Kb |
Contatta l’autore |