Tesi etd-01092021-163409 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
TRIOLO, ELISABETTA
URN
etd-01092021-163409
Titolo
Analisi computazionale di bias e stereotipi socio-culturali in word embeddings italiani
Dipartimento
FILOLOGIA, LETTERATURA E LINGUISTICA
Corso di studi
INFORMATICA UMANISTICA
Relatori
relatore Prof. Lenci, Alessandro
Parole chiave
- bias
- italian word embeddings
- italiano
- rnsb
- weat
- word embeddings
Data inizio appello
29/01/2021
Consultabilità
Non consultabile
Data di rilascio
29/01/2091
Riassunto
Questo lavoro di tesi ha l’obiettivo di studiare e analizzare la presenza di stereotipi socio-culturali in due diversi modelli distribuzionali dell’italiano, utilizzando le due metriche WEAT (Word Embedding Association Test) e RNSB (Relative Negative Sentiment Bias). Dopo aver effettuato la ricerca tramite il framework WEFE (Word Embeddings Fairness Evaluation Framework), è stato effettuato un confronto tra le due metriche.
This thesis work aims to study and analyze the presence of socio-cultural stereotypes in two different distributional models of Italian, using the two metrics Word Embedding Association Test (WEAT) and Relative Negative Sentiment Bias (RNSB). After the research, using WEFE framework (Word Embeddings Fairness Evaluation Framework), on the basis of the results obtained from each metric in the two different models, a comparison was made between the two metrics.
This thesis work aims to study and analyze the presence of socio-cultural stereotypes in two different distributional models of Italian, using the two metrics Word Embedding Association Test (WEAT) and Relative Negative Sentiment Bias (RNSB). After the research, using WEFE framework (Word Embeddings Fairness Evaluation Framework), on the basis of the results obtained from each metric in the two different models, a comparison was made between the two metrics.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |