ETD system

Electronic theses and dissertations repository

 

Tesi etd-07192016-120015


Thesis type
Tesi di dottorato di ricerca
Author
FRANCESCHINI, FEDERICO
URN
etd-07192016-120015
Title
Simplicial Volume and Relative Bounded Cohomology
Settore scientifico disciplinare
MAT/03
Corso di studi
MATEMATICA
Commissione
tutor Dott. Frigerio, Roberto
Parole chiave
  • Gromov Proportionality Principle
  • Simplicial Volume
  • Relative Bounded Cohomology
  • Bicombing
Data inizio appello
15/08/2016;
Consultabilità
completa
Riassunto analitico
In the first part of this thesis we prove the Proportionality Principle for the Lipschitz simplicial volume without any restriction on curvature, thus generalizing the main result in a paper by Löh and Sauer. The cone procedure employed by Löh and Sauer - which is based on the uniqueness of geodesics in Hadamard manifolds - is replaced here by a local construction that exploits the local convexity of general Riemannian manifolds. Our approach restricts in particular to the closed case, thus giving a different proof of the classical Gromov Proportionality Principle. Some estimates of the Lipschitz simplicial volume for product of manifolds are also provided.

In the second part, we establish a bounded cohomology characterization of relative hyperbolicity for group pairs: A group pair (Γ,Γ′) is relatively hyperbolic iff the comparison map: H_b^k(Γ, Γ′; V) → H^k(Γ, Γ′; V) is surjective for any k ≥ 2 and a large class of coefficients V. The "only if" part of the theorem is stronger than the analogous one in a similar theorem by Mineyev and Yaman.
File