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Introduction

In this thesis we describe how the study of links is affected by allowing an extra dimension.

The study of smooth knots S1 ↪→ S3 and links S1 t · · · t S1 ↪→ S3 up to isotopy is a
central problem in the area of low-dimensional topology, i.e. the study of manifolds of di-
mension ≤ 4. Every closed oriented 3-manifold is obtained by taking a link in S3, removing a
tubular neighborhood of it and gluing these solid tori back in the sphere along a diffeomorphism
of the boundary. This procedure is called Dehn surgery and different link diagrams describe
diffeomorphic 3-manifold via surgery if and only if they are related by a set of combinatorial
transformations known as Kirby moves. Surgery diagrams can also be interpreted as gluing
instructions of 4-dimensional handles to S3 = ∂D4. The theory of Kirby calculus uses this
idea to give a combinatorial description of 4-manifolds, an accessible account of this is [GS99].

Given an isotopy of knots φ : S1 × [0, 1] → S3 there is an embedding φ̂ : S1 × [0, 1] ↪→
S3 × [0, 1] given by φ̂(x, t) = (φ(x, t), t) of an annulus whose boundary components are the
original knots φ0 and φ1, respectively in the spheres S3 × {0} and S3 × {1}. The case of
links is analogous and gives disjointly embedded annuli. Such a family of annuli is called a
concordance and the links are called concordant.

Fox and Milnor observed in 1966 [FM66] that knots with the operation of connected sum form
a group modulo concordance. The structure of this group is still very misterious; Livingston
wrote a survey of the state of the art in 2004 [Liv04]. Invariants have been developed to
distinguish knots and links up to concordance, but the story is far from its end. For example a
modification of links called mutation is known to be able to change the concordance class of a
link but is not detected by the signature [KL01], one of the standard concordance invariants
of links.

In detail, the goal of this work is to give an account of the theory of Whitney towers as
a way to study singular concordances of links, i.e. generically immersed annuli. This frame-
work has been developed in the last fifteen years by Conant, Schneiderman and Teichner, see
[CST11] for a survey.

In Chapter 1 we explain the theory in its simplest, framed form and show its connection
with a class of link invariants defined by Milnor in his early works [Mil54, Mil57] and with
the problem of deciding whether a link is slice (i.e. concordant to unlink) or not.

In Chapter 2 we address some subtler problem regarding twisting in Whitney towers and
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the corresponding obstruction theory. Twisted towers are used to define a notion of twisted
concordance and a corresponding filtration on the set of links. The structure of this filtration
is not fully understood yet and it seems to suggest the existence of a new class of concordance
invariants generalizing the classical Arf invariant of knots.

In Chapter 3 we explain a general procedure to build string link invariants from ribbon Hopf
algebras and a recent result of Meilhan and Suzuki [MS14] describing concordance informa-
tion contained in the invariant associated to the quantized h-adic universal enveloping algebra
Uh(sl2).

As future project, we aim at finding concordance information in quantum invariants com-
ing from other ribbon Hopf algebras and to relate it to the obstruction theory of twisted
Whitney towers.

Acknowledgments The author would like to thank Prof. Peter Teichner for the time spent
discussing the topics of this thesis. He would also like to thank Prof. Riccardo Benedetti and
Prof. Paolo Lisca for all the mathematical inspiration and advices received in the last years
at University of Pisa. The author was supported by the European Union Erasmus program
and the International Max Planck Research School while visiting the Max Planck Institute for
Mathematics in Bonn.
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CHAPTER 1

An obstruction theory for slice disks

1.1 Slice links

A link L ⊂ S3 is the image of a smooth embedding tS1 ↪→ S3, its connected components are
knots and we assume they are finite and write L = L1∪ · · · ∪Lm. The intrinsic topology of a
link is obvious, but we are interested in distinguishing them as embeddings up to ambient iso-
topies of S3, i.e. we consider L,L′ ⊂ S3 equal if there is a smooth map H : S3× [0, 1]→ S3

such that H(·, 0) = idS3 , H(·, 1)(L) = L′ and H(·, t) is a diffeomorphism of S3 for every t.
A link is trivial if its embedding extends to a smooth embedding tD2 ↪→ S3.

One of the classical goals of knot theory is to decide whether a link is trivial or not. The main
concern of this chapter is to study links in a 4-dimensional perspective: thinking S3 = ∂D4

we call a link slice if its embedding extends to a smooth embedding tD2 ↪→ D4. There are
infinitely many nontrivial slice links, see for example Figure 1.1.

Figure 1.1: Rubber band link

Not all links are slice and we develop below obstructions to prove this. By the way, one
can always assume to be in the following situation

PROPOSITION 1. Given L ⊂ S3, each component is the boundary of a compact connected
orientable surface properly embedded in D4 and these can be chosen in such a way that each
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pair intersects in finitely many interior points. The same statement is also true with generically
immersed disks instead of properly embedded surfaces.

Proof. The link L is given by an embedding φ : tS1 ↪→ S3, we denote φi its restrictions
to the components of L. By Seifert’s algorithm [Kau87] each one admits an extension to a

smooth embedding φ̂i : Σi ↪→ S3 where Σi is a compact connected orientable surface with
∂Σi = S1. Now we push interiors inside D4, this means we trade φ̂i with a proper embedding
φ̃i : Σi ↪→ D4 as follows. Choose a smooth function λi : Σi → R with value 1 on the boundary
circle, with ε ≤ λi < 1 on the interior and such that ‖∇λi‖∞ ≤ ε and take φ̃i = λiφ̂i. The

latter condition guarantees that ‖ d φ̃ − d φ̂i‖ ≤ Cε for some costant C and thus φ̃i is an

immersion because φ̂i is, furthermore φ̃i is injective and thus an embedding. By perturbing
these embedded surfaces in D4 they intersect in a compact 0-dimensional manifold. For the
second part of the statement, the fact that D4 is simply connected guarantees that φi extends
to a continuous map φ̂i : D2 → D4 and by standard approximation theorems in differential
topology this is homotopic relative to the boundary to a generic proper immersion, i.e. a
smooth map that is an embedding on the boundary and an immersion on the interior with
isolated double points.

We will assume from now on that all surfaces or immersed disks bounding an oriented
link are respectively properly embedded and generically immersed in D4 and have orientation
induced by the link.

1.2 4d interpretation of linking number

A first obstruction to sliceness is given by linking numbers of pairs of components in a link.
The linking number of L = L1∪L2 oriented link is defined by noticing that H1(S3\L1;Z) ∼= Z
and a generator is given by [µ1] meridian of L1, then

[L2] = lk(L1, L2)[µ1] ∈ H1(S3 \ L1;Z)

See [Kau87] for more about this and a simple recipe to compute this number from a planar
diagram of L.

PROPOSITION 2. Given L = L1 ∪ L2 oriented link, any two surfaces bounding L in D4

have intersection number lk(L1, L2).

Proof. Let F1, F2 ⊂ D4 be two surfaces bounding respectively L1, L2. In general position
these surfaces intersect in finitely many interior points p1, . . . , pk. Choose D1, . . . , Dk ⊂ F2

disjoint disks around each intersection point and put F̃2 = F2 \ (∪i int(Di)), this is a surface

with ∂F̃2 = L2 t (ti∂Di) and it inherits an orientation from F2.
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Figure 1.2: Generic intersections

Up to shrinking the disks, around each pi we have a local picture as in Figure 1.2 and ∂Di

is thus a meridian of F1, i.e. the boundary of the fiber disk over pi in the tubular neighborhood
N(F1) ⊂ D4. Then F̃2 gives an homology in D4 \ F1 between K2 and a union of meridians
of F1 and

[L2] = [∂D1] + · · ·+ [∂Dk] ∈ H1(D4 \ F1;Z)

Now N(F1) �L1= N(L1) tubular neighborhood of L1 ⊂ S3 and being F1 an oriented surface
with boundary N(F1) is a trivial disk bundle, therefore every meridian ∂Di of F1 is homologous
in N(F1) to a fixed meridian µ1 of L1 ⊂ S3 with an orientation governed by a sign sgn(pi)
that says if F1 intersects F2 in pi positively or negatively, thus

[L2] =
k∑
i=1

[∂Di] =

(
k∑
i=1

sgn(pi)

)
[µ] = (#F1 ∩ F2)[µ] ∈ H1(D4 \ F1;Z)

where #F1 ∩ F2 is the intersection number. The proof ends by noticing that using Mayer-
Vietoris on the decomposition D4 = N(F1) ∪D4 \N(F1) we get an exact sequence

H2(D4)→ H1(N(F1) ∩D4 \N(F1))→ H1(N(F1))⊕H1(D4 \N(F1))→ H1(D4)

Being D4 contractible the middle arrow is an isomorphism and we also know that N(F1) ∼=
F1 ×D2, N(F1) ∩D4 \N(F1) ∼= F1 × S1 and D4 \N(F1) ' D4 \ F1. Using then Künneth
we finally get that the inclusion S3 \L1 ↪→ D4 \F1 induces an iso H1(S3 \K1) ∼= H1(D4 \F1)
and this gives

lk(L1, L2)[µ1] = [L2] = (#F1 ∩ F2)[µ1] ∈ H1(S3 \ L1;Z)

We point out that this also gives a proof of lk(L1, L2) = lk(L2, L1), not obvious from the
definition of linking number.
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Figure 1.3: Hopf link

A simple consequence of this is that the Hopf link in Figure 1.3 is not slice, in fact one
can choose arbitrary orientations on the components Li and in any case lk(L1, L2) = ±1,
therefore L cannot bound disjoint disks in D4.

1.3 Bing doubling

Given an oriented knot K, a longitude is any embedded circle in the boundary of a tubu-
lar neighborhood ∂N(K) that is homologous to K in N(K) and nullhomologous in S3 \
int(N(K)). Such a longitude is unique up to ambient isotopy in ∂N(K) and can be obtained
as generic intersection of a Seifert surface Σ of K with ∂N(K). A closed collar of K ⊂ Σ
gives an embedded strip S ⊂ N(K) and it is orientable because Σ is. The orientation of K
induces an orientation on S and the bounding longitude. Figure 1.4 shows how to crop an
oriented square Q out of S, rotate it of π/2 in the direction of a positive meridian and expand
it to intersect S \Q in two clasps.

Figure 1.4: Bing doubling

We call the oriented link BD(K) = ∂(S \Q) ∪ ∂Q Bing double of K. By construction,
it has two unknotted componets whose linking number is 0. If L = L1 ∪ · · · ∪ Lm we call
BDi(L) the (m+1)-link obtained by Bing doubling the i-th component of L.
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We are mainly interested in Bing doubling as a way to kill linking numbers between com-
ponents of a given link, as illustrated in Figure 1.5 where a Hopf link is Bing doubled to get
the so called Borromean rings, whose pairwise linking numbers are all 0.

Figure 1.5: Bing double of Hopf link

By construction, after a Bing doubling on a component the newly created components
have two natural bounding disks coming from a collar and living inside a tubular neighborhood
of the old component, therefore both have linking number 0 with any other component of the
link.

PROPOSITION 3. If L = L1 ∪ · · · ∪ Lm is an oriented slice link, then BDi(L) is slice for
every i

Proof. We prove the claim for L = K slice knot, the case of a slice link is analogous. See
Figure 1.6 for an example. Let BD(K) = K1 ∪ K2, by definition the two components are
both unknot and come with two canonical bounding disks Q and S \ Q as described in the
definition of Bing double, both living in a tubular neighborhood N(K) of K ⊂ S3 and in-
tersecting in two clasps. We can build two disks D1, D2 bounding the components, properly
embedded in D4 and intersecting in exactly two points in the following way.

Extend K1 ∪ K2 radially inside D4 by ε, this means extending the initial embedding φ :
S1 t S1 ↪→ S3 to a proper embedding φ̂ : (S1 t S1) × [0, 1] ↪→ D4 given by φ̂(x, t) =
(1 − t)φ(x) + t(1 − ε)φ(x). Now each Ki ⊂ S3 bounds an annulus Ai[1,1−ε] whose second

boundary component is (1−ε)Ki ⊂ (1−ε)S3, cap off A1
[1,1−ε] with the disk (1−ε)Q ⊂ (1−ε)S3

and further extend (1− ε)K2 radially by ε. This gives another annulus A2
[1−ε,1−2ε] and finally

cap off this with the disk (1 − 2ε)(S \ Q) ⊂ (1 − 2ε)S3. The required disks are given by
D1 = A1

[1,1−ε] ∪ (1− ε)Q and D2 = A2
[1,1−ε] ∪A2

[1−ε,1−2ε] ∪ (1− 2ε)(S \Q) and they intersect

in two points p, q ∈ (1− ε)S3.
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Figure 1.6: Slice disks for the Bing double of a square knot

Finally we remove these intersection points by means of a Whitney move (see [Sco05]
for a description of this classical trick of 4-dimensional topology). The intersection points
p, q divide (1− ε)K2 in two arcs, call α (green in Figure 1.6) the arc that does not intersect
the longitude of (1 − ε)K and β (red in Figure 1.6) the other, they are oriented as in the
definition of Bing double. Take a path γ ⊂ (1 − ε)Q, by choosing a compatible orientation
this gives an oriented closed curve α ∪ γ isotopic to (1− ε)K ⊂ (1− ε)S3.

Build a Whitney disk as follows. Extend α ∪ γ radially by ε inside D4 and normally in
the opposite direction of a longitude of α ∪ γ ⊂ (1 − ε)S3. Now α ∪ γ bounds an annulus
AW[1−ε,1−2ε], by further extending this annulus radially inside D4 by ε and then capping off
with a slice disk for K we get the required Whitney disk W . By construction W ∩D1 = γ,
W ∩D2 = α and the disk has framing lk(α ∪ γ, β ∪ γ) = 0.

The converse problem of deciding whether a knot or link whose Bing double is slice is or
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not itself slice is open, see [Cim06] for an account of what is known and a partial result.

Figure 1.7: Failure of a Whitney move

If we start with an oriented link L that is not slice, a Bing doubling can (and will, if the
previous open problem turns out to have answer yes) be nonslice. As an example, consider
again the Borromean rings obtained by Bing doubling the Hopf link. Figure 1.7 shows three
bounding disks and an attempt to make them disjoint by means of a Whitney move as in the
previous proof. Here the move fails because the green Whitney disk W paring the intersec-
tions D1 ∩D2 = {p, q} also intersects D3 in a point r and after the move that removes p, q
two new intersection points r′, r′′ are created.

1.4 Whitney towers and intersection trees

The failure of a Whitney move could be due to a bad initial choice of disks Di or Whitney disk
W but L may still be slice. We introduce now a framework due to Conant, Schneiderman
and Teichner that gives obstructions to the existence of such a working family of disks. In
particular this will give new obstructions for sliceness. We refer to [CST14] for the most
recent description of this framework.

DEFINITION 1. An oriented link L ⊂ S3 bounds an order n Whitney towerW = ∪kWk ⊂
D4 if the following conditions are satisfied:

• each component Li bounds a generically immersed disk Wi ⊂ D4 with compatible
orientation, these are the order 0 disks of W and we put W0 = ∪Wi, we call the
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transverse intersection points inW0 order 0 intersections points, they come with a sign
obtained by comparing with the ambient standard orientation of D4

• for 0 < k ≤ n the set of order k− 1 intersection points has a partition in pairs (p+, p−)
with p+, p− ∈ WI ∩WJ positive and negative point of intersection between disks of
(possibly different) order ≤ k − 1, for each pair there is an immersed Whitney disk
W(p+,p−) ⊂ D4 that pairs the intersections, it has an arbitrary orientation, these are
the order k disks of W and we put Wk = ∪W(p+,p−) ∪ Wk−1, we call the transverse
intersection points in Wk \ Wk−1 order k intersection points, they come with a sign
obtained by comparing with the ambient standard orientation of D4

• the boundaries of all disks are disjointly embedded and their interiors are in generic
position

• all disks are framed (see Chapter 2 for framings and twisted Whitney towers)

To summarize who intersects who, we associate to a Whitney tower W a combinatorial
forest t(W) using the following algorithm. To each order 0 disk Wi associate the rooted
tree consisting of an edge with one vertex labeled by i. Recursively, to each order k > 0
disk pairing two intersection points between disks of lower order with rooted trees I and J
associate the rooted product (I, J), i.e. the rooted tree obtained identifying the roots of I
and J and adding a rooted leg to the gluing point in such a way that a clockwise walk around
it and starting from the new leg first meets first I and then J . To an intersection point
p ∈ WI ∩WJ we associate the unrooted tree tp = 〈I, J〉, i.e. the same as (I, J) but with no
new rooted leg added. Then t(W) = ttp where the union runs over all unpaired intersection
points p.

Figure 1.8: Intersection forest of a Whitney tower

All trees have vertices of degree one or three and the latter are at least n for each tree.
By construction, vertices of degree one except the root come with a label in {1, . . . ,m}.
Each rooted tree can be thought embedded in W with each trivalent vertex and rooted edge
in the interior of a disk and each edge not containing the root as a path crossing a Whit-
ney arc exactly once as in Figure 1.8. By convention, we choose the embedding in such
a way that descending a tree from the root to the leaves the two edges spreading out of
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each trivalent vertex enclose the negative intersection point of the corresponding Whitney
disk. In this way each trivalent vertex inherits a cyclic orientation from the orentation of a
Whitney disk. The unrooted trees have the same trivalent oriented vertices of the rooted ones.

At the price of increasing the number of disks and intersection points, we can always
arrange a Whitney tower to be split by means of finger moves as in Figure 1.9. This means
that each disk of positive order has either exactly one intersection point, or exactly two
intersection points paired by another disk or no intersection points at all. If WS is such a
tower, its disks of positive order can be partitioned in subtowers Wp with exatly one unpaired
intersection point p each one. Clearly t(W) = t(WS) and the forest can be embedded in WS

(it can only be embedded tree by tree in W).

Figure 1.9: Split towers

Fixed m, we call T (m) the free abelian group generated by finite oriented unrooted trees
with vertices of degree one or three and univalent vertices labeled on {1, . . . ,m}, modulo label
preserving isomorphisms and the two relations in Figure 1.10. We denote Tn the subgroup
generated by trees with n vertices of degree 3.
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Figure 1.10: AS and IHX relations

DEFINITION 2. Given a Whitney tower W of order n on a link with m components, its
intersection invariant is defined as

τn(W) =
∑

εptp ∈ Tn

The sum is taken over all unpaired intersection points of order n and εp is the sign of the
intersection point p whose associated unrooted tree is tp as defined above.

Thanks to AS relation τn(W) does not depend on the arbitrarily chosen orientations of
Whitney disks of positive order, the IHX has an important role in the following

THEOREM 1. Given L ⊂ S3 oriented link and W order n Whitney tower on it then
τn(W) = 0 if and only if L bounds an order n+ 1 Whitney tower.

see Theorem 2 in [ST04] for a proof.

These obstructions refer to particular tower, but we explain in Section 1.7 how it is pos-
sibile to connect them to data purely depending on the link. This connection will show, for
example, that the Borromean link is not slice because the Whitney tower of order 1 described
in Figure 1.7 has intersection invariant

τ1(W) = 1 −−< 2
3 6= 0 ∈ T1

However, we emphasize that if we relax our requests on the genus of surfaces bounding a
link L ⊂ S4 in D4, it turns out that it bounds disjoint properly embedded connected surfaces
if and only if the linking numbers vanish. One direction is due to Proposition 2, the other
is more subtle and depends on the fact that L bounds a Whitney tower of order 1 thanks
to Theorem 1 and this can be converted to a class 2 grope whose bottom stages give the
required surfaces as described in Proposition 4 later.

1.5 Realization of arbitrary obstructions

The goal of this section is to show that any element in Tn occurs as intersection invariant
τn(W) of an order n Whitney tower bounding a link with m components. What follows is a
brief account of Section 3 in [CST12] and it will clarify the role of Bing doubling as a general
way to raise the order of an intersection obstruction as already done before with the Hopf and
Borromean link.
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THEOREM 2. Fixed m, for each t ∈ Tn on labels {1, . . . ,m} there exists an oriented link
L ⊂ S3 with m components and a Whitney tower W of order n bounding L such that
τn(W) = t.

Proof. Assume first that t has distinct labels on vertices of degree one. We proceed by in-
duction on n number of vertices of degree three. Assume n = 0 and t = ke with k ∈ Z and
e a single edge with distinct labels i, j ∈ {1, . . . ,m} on vertices.

For k = ±1 this intersection tree can be realized by taking a split link L = U (m−2) t H
where U (m−2) is the unlink with m−2 components and any label except i and j, H is instead
a Hopf link whose componets have labels i and j. A suitable Whitney tower of order 0 W on
L with τ0(W) = t is then given by taking disjoint disks bounding U (m−2) and two more disks
Wi and Wj bounding H disjoint from the previous ones and intersecting each other in one
point, the sign can be adjusted by choosing appropriate orientations on H.

The case |k| > 1 can be handled by taking |k| − 1 copies of H with same choices of
orientations and labelings, then choosing |k| − 1 bands in S3 connecting the i components
and |k| − 1 bands connecting the j components. This gives a new link with m components
with a natural Whitney tower of order 0 and |k| unpaired intersection points of order 0 with
same sign, the tower is obtained by performing boundary band sums of disks of order 0 of the
individual towers along the chosen bands, see Figure 1.11 for the case m = k = 2. Any sum
of trees of the previous type can be realized by performing again band sums of individual links
realizing each one, with corresponding boundary band sums of 0-disks in their Whitney towers.

Figure 1.11: Band sum

Assume now that t has n > 0 vertices of degree three. If t is a single tree, a choice of a
root r ∈ t induces a partial order on the set V(t) of vertices of t: say v1 ≤ v2 if there exists
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a path from r to v2 that contains v1. Call leaves L(t) (with respect to r) the set of maximal
elements in V(t) and preleaves the maximal elements in V(t)\L(t) (this is nonempty because
n > 0). Any preleaf has exactly two adjacent leaves because t has only vertices of degree 1
or 3.

= ( ,

C( =(

(

Figure 1.12: Undoubling

Fix now an arbitrary root r ∈ t and any preleaf v with respect to r, call v1, v2 its adjacent
leaves and assume v1 < v2 according to the cyclic ordering around v given by hypothesis.
Then t = (t′, e) where t′ has n vertices of degree three and a root obtained by deleting the
label l(v2), e is an edge with a root and a vertex labelled l(v2). By induction one can build
a link L′ ⊂ S3 with m − 1 components and a Whitney tower W ′ of degree n − 1 bounding
L′ such that τn−1(W ′) = c(t′) unrooted three with n − 1 vertices of degree three obtained
by collapsing the root of t′ and forgetting v. Taking L = BDl(v1)(L

′) we get a link with m
components and if we agree to label l(v2) the unknotted component obtained via rotation of
π/2 in the definition of Bing double we claim that L bounds a Whitney tower W of order n
such that τn(W) = t.
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Figure 1.13: Raising obstructions

The tree c(t′) is associated to the unique intersection point p ∈ WI ∩Ll(v1) of order n−1,
here WI (green in Figure 14a) is a Whitney disk of order n − 1 in W ′. By Bing doubling
Ll(v1) this component is replaced by two unknots Kl(v1), Kl(v2) (labels 3 and 4 in Figure 14b)
and the required tower is W =W ′′ ∪W ′′′, here W ′′′ is W ′ with Wl(v1) removed, while W ′′ is
defined as follows. Kl(v1)∪Kl(v2) can be extended radially inside D4 while staying in a tubular
neighborhood of the old component Ll(v1) in each intermidiate copy of S3 and this guarantees
that the created two annuli Al(v1), Al(v2) intersectW ′ exactly in two points p+, p− of opposite
sign replacing the old unpaired intersection point p. We can arrange WI ∩Al(v1) = {p+, p−}
andW ′∩Al(v2) = ∅ and use half of one of the two natural disks coming from the Bing double
construction as a Whitney disk WJ (blue in Figure 14b) of order n that pairs {p+, p−} and
generates a new order n unpaired intersection point q = WJ ∩ Al(v2). By further extending
Al(v1), Al(v2) radially inside D4 we finally get an unlink with two components and capping
them off with disjoint disks we complete the description of disks of order 0 Wl(v1) and Wl(v2)

bounding Kl(v1) and Kl(v2). Then W ′′ = Wl(v1) ∪Wl(v2) ∪WJ and one has τn(W) = t. By
sum connecting links and towers one can realize arbitrary sums of trees in Tn with distinct
labels.
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Finally, if a tree in Tn has one repeated label l on k vertices, choose colors c1, . . . , ck and
relabel those vertices with (l, c1), . . . , (l, ck), now the tree has distinct labels and can be re-
alized by a link L with m + k − 1 components and a suitable Whitney tower. Choose k − 1
bands connecting the components L(l,ci) for 1 ≤ i ≤ k, performing then band sums of the
componets and boundary connected sums of the relative disks of order 0 we get a new link
with m components and a new Whitney tower with same intersection tree as before but with
identified labels (l, c1), . . . , (l, ck) = l.

1.6 Gropes

We introduce a technical tool of 4-dimensional topology that will be used in the next section
to prove the main theorem connecting intersection invariants of Whitney towers and Milnor
invariants of links. For more informations on gropes we refer to [FQ90].

DEFINITION 3. A grope G is a 2-complex constructed as follows:

• the bottom stage is a compact oriented connected surface of positive genus with one
boundary component and comes with a symplectic basis of circles on it

• higher stages are obtained by attaching punctured tori with compatible orientations to
any number of basis circles in any lower stage that do not already have a torus attached
to them, and choosing a symplectic pair of circles on each attached torus

the basis circles in all stages of G that do not have a torus attached to them are called tips,
attaching disks along the tips we get a capped grope Gc. We say that an oriented link L ⊂ S3

bounds a capped grope Gc ⊂ D4 if the components Li bound properly embedded and disjoint
gropes Gi ⊂ D4 with compatible orientations and such that their tips bound caps that are
framed disks whose interiors are disjoint, but each one intersects in exactly one point the
bottom stage of some grope Gj (pheraps with i 6= j).
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Figure 1.14: Grope

To a capped grope Gc bounding L ⊂ S3 we associate a combinatorial forest as follows.
For each Gi choose gi embedded arcs in the interior of its bottom stage, where gi is its genus
and we label one of the two vertices of the arc with i. Choose an interior point for each torus
in the higher stages of Gi and one for each disk capping a tip, then for every symplectic curve
choose a path intersecting it once and connecting two interior points in the regions of Gi

glued by that curve (in the case of the bottom stage, one is the unlabelled vertex of an edge).

This procedure gives gi trees for every Gi, each one with vertices of degree three or one.
Vertices of degree one have a natural labelling because by hypothesis each capping disk inter-
sects in exactly one point the bottom stage of some grope Gj. Vertices of degree three have
a natural cyclic orientation induced by the grope. Every tree comes with a sign computed as
product of signs of intersection points between capping disks and bottom stages of gropes in
D4. Therefore we have a well-defined combinatorial forest t(Gc) obtained as disjoint union of
trees coming from Gi for all i. Finally, we call class of Gc the minimum degree of a tree in
t(Gc) plus 1.

We sketch below a procedure to convert Whitney towers to gropes, for a more detailed
description see [CST14].

PROPOSITION 4. If L ⊂ S3 oriented link bounds an order n ≥ 1 Whitney tower W , then
it bounds a class n+ 1 capped grope Gc such that t(W) ∼= t(Gc) as graphs (forgetting roots
and labels). Furthermore the previous isomorphism can be chosen to preserve signs of tree
components.
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Proof. We can use finger moves to make W split without modifying t(W). Being n ≥ 1 all
order 0 intersection points are paired by Whitney disks and called p1, . . . , pN the unpaired
intersections points in the tower we have t(W) = tp1 t . . .t tpN where tpi is a tree of degree
di ≥ n. Each tpi is embedded in a subtower Wpi and the idea is to turn this into a branch
Gc
j,i of a capped grope Gc

j = ∪iGc
j,i on Lj. The notation for this grope suggests that it

comes from a split subtower Wpi with one order 1 disk pairing two intersection points in the
order 0 disk ofW that bounds Lj, see Figure 1.15 for an example with j = 1 and pi of order 3.

Figure 1.15: Groping simple

Assume first that tpi is a simple tree, this means it has maximal diameter among trees
with same number of vertices. Order the disks in Wpi by height and call them W 1, . . . ,W di .
The normal bundle of W 1 restricts to a disk bundle over ∂W 1, we can use this as a guide
to remove two disks D+, D− around the intersection points of order zero paired by W 1 and
glue in a tube. Performing this surgery on every pair of cancelling intersections the disk Wj

of W becomes a compact connected oriented surface W ′
j properly embedded in D4 and with

boundary Lj, this comes with a canonical symplectic basis of circles by taking, for every tube,
its intersection with the disk W1 relative to its tower and a meridian.

These circles also have natural capping disks from W 1 and the normal disks to ∂W 1 re-
spectively. The normal disk intersects a Whitney arc in one point by definition and this point
belongs to a disk of order 0 in W because by assumption tpi is simple and this says that the
disk will be a cap in the final grope Gc

j,i. The disk coming from W 1 instead could have one
intersection point or two, thanks to the fact thatW is split. If it has one point then reasoning
as before it’s a cap in the final grope Gc

j,i, di = 1 and the point must be pi, so we are done. If
it has two points paired by W2 then we can use this disk to get a higher stage of the grope as
before, gluing the tube to the disk gives a punctured torus whose boundary is one of the chosen
symplectic circles. Proceeding in this way we finally get to pi and complete the construction
of Gc

j,i and Gj = ∪iGc
j,i are then the higher stages of a grope on Lj whose bottom stage is W ′

j .

These gropes are disjointly embedded because boundaries of Whitney disks are disjointly
embedded by definition of Whitney tower. From this definition also follows that all Whitney
disks are framed, thus Whitney sections (see Chapter 2) give a set of circles homologous to
chosen symplectic circles in the gropes and we can use these as a guide to build a forest

19



t(Gc) ∼= t(W) as required, this is clear from Figure 1.15.

Furthermore we can choose orientations on the caps of the gropes in such a way that they
intersect positively the bottom stages, except for caps intersecting them in original unpaired
intersection points pi that still intersect with the original sign. This guarantees that the sign
of each tree in t(Gc) equals the sign of the corresponding tree in t(W).

To conclude the proof, we have to deal with the case of a non-simple tree tpi . The pre-
vious surgery process goes upward along a tree tpi until we have to deal with a Whitney disk
W in Wpi that has a single intersection point q with another disk WK in W . In the previous
case WK had to be a disk of order 0 and gave rise to a cap in the final grope, but if WK has
positive order we proceed as follows.

Figure 1.16: Groping general

Let K = (K1, K2) be the tree associated to the Whitney disk WK as in Figure 1.16b.
We can use WK to perform a Whitney move that removes the intersections paired by WK

and q = W ∩WK but creates two new intersections {q′, q′′} = W ∩ K1 paired by a new
Whitney disk W ′ and W ′ ∩K2 = q′′′. This gives a new Whitney tower W ′ with W ′ instead
of WK and Figure 1.16c shows that t(W ′) ∼= t(W) as signed graphs. One can repeat this
procedure to ensure that a single intersection point q ∈ W always comes from an intersec-
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tion of W with a disk of order 0 inW and therefore it gives rise to a cap in the final grope Gc.

Finally, Gc is of class n + 1 because each tree in t(Gc) has order di ≥ n and there is at
least one of order n being W a Whitney tower of order n.

1.7 Connection with Milnor invariants

Once we have a satisfying obstruction theory for Whitney towers, we can explore the connec-
tion between intersection invariants and other invariants depending only on the link data. We
start with Milnor invariants, see [Mil54, Mil57] for the original definition of these invariants.

Assume that all the longitudes of L ⊂ S3 lie in the (n + 1)-term of the lower central
series of the link group π1(S3 \ L)n+1, then a choice of meridians α1, . . . , αm induces an
isomorphism

π1(S3 \ L)n+1

π1(S3 \ L)n+2

∼=
Fn+1

Fn+2

where F is the free group on m generators αi. The group on the right is clearly abelian and, by
interpreting commutators as Lie brackets, it is isomorphic as abelian group to the degree n+1
part of the free Lie algebra on m generators L(m) =

⊕
n Ln (grading given by commutator

lenghts).

DEFINITION 4. If L ⊂ S3 oriented link, choose a base point in S3 \ L, meridians αi and
longitudes li, then if li ∈ π1(S3 \L)n+1 for all i the order n universal Milnor invariant of L is
defined as

µn(L) =
∑

αi ⊗ li ∈ L1 ⊗ Ln+1

Milnor’s work shows that µn(L) only depends on the isotopy class of L and is thus a well
defined link invariant (as long as the condition on longitudes is satisfied).

We explain below in the framed setting one of the main results of [CST14], which also
holds in the twisted case as discussed in Chapter 2.

THEOREM 3. If L ⊂ S3 oriented link bounds a Whitney tower W of order n ≥ 1, then
µk(L) = 0 for k < n and

µn(L) = ηn(τn(W))

here ηn : Tn → L1 ⊗ Ln+1 is a group morphism that turns trees into brackets given by the
formula

ηn(t) =
∑
v

αl(v) ⊗Bv(t)

where v ranges among degree 1 vertices of t, we call l(v) their labels, αi freely generate L
and Bv(t) ∈ Ln+1 is the obvious bracketing associated to the tree t once we choose v as root.

Proof. We give a proof for n = 1, the ideas involved in the n > 1 case are similar. Intersection
points of order 0 in W are paired by disks of order 1 and therefore all linking numbers and
framings of L are 0 and this implies µ0(L) = 0. Then chosen αi meridians and li longitudes
for L we have li ∈ π1(S3 \ L)2 for every i and

µ1(L) = α1 ⊗ l1 + . . .+ αm ⊗ lm ∈ L1 ⊗ L2
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On the other hand τ1(W) = εp1tp1 + . . .+ εpktpk with ps unpaired intersection of order 1 and
tps associated tree of degree 1 and called tps the tripod with labels as, bs, cs ∈ {1, . . . ,m} we
have

η1(τ1(W)) = η1(
k∑
s=1

εpstps) =
k∑
s=1

(αas⊗[αcs , αbs ]
εps +αbs⊗[αas , αcs ]

εps +αcs⊗[αbs , αas ]
εps ) =

=
m∑
i=1

(αi ⊗
∏

1≤s≤k,as=i

[αcs , αbs ]
εps + αi ⊗

∏
1≤s≤k,bs=i

[αas , αcs ]
εps + αi ⊗

∏
1≤s≤k,cs=i

[αbs , αas ]
εps )

The last equality holds because (a summand begins with αi⊗) ⇐⇒ (as = i or bs = i or
cs = i) and if some tree tps has a repeated label i then the corresponding three terms in the
last expression sum to 0. We can rewrite the previous in compact form as

m∑
i=1

αi ⊗ (
∏

1≤s≤k

[αcs , αbs ]
εpsδias [αas , αcs ]

εpsδibs [αbs , αas ]
εpsδics )

Now it suffices to show that for every i one has

li =
∏

1≤s≤k

[αcs , αbs ]
εpsδias [αas , αcs ]

εpsδibs [αbs , αas ]
εpsδics ∈ L2

∼=
π1(S3 \ L)2

π1(S3 \ L)3

Figure 1.17 shows how the boundary of a punctured genus g surfacace is a product of
commutators of symplectic pairs of circles. Then it’s natural to try to show that each li
bounds a punctured surface realizing the previous identity.

Figure 1.17: Commutators

We use finger moves to make W split and take a capped grope Gc of class 2 bounding L
and with same intersection invariant as described in Proposition 4. This grope has a surface
Gi of genus gi bounding Li for every i and these are disjointly embedded in D4. Furthermore
every surface has a symplectic system of 2gi circles capped by disks intersecting some Gj

exactly once and for each pair of disks in Gc there is an embedded copy of tps ⊂ Gc with
labels as, bs, cs. Now we modify each Gi to get a puncutred surface Σi bounding Li and with
genus equal to r number of vertices with label i in ttps , see Figure 1.18.
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Figure 1.18: Surgered bottom stage

A parallel push-off of Gi bounds li ⊂ S3 and li = γi1 · · · γir in π1(D4 \ Gc), i.e. it’s
a product of embedded loops in a parallel push-off of Gc with each loop bounding either a
branch of the grope (type 1, green in Figure 1.18) or a normal disk to a cap intersecting the
bottom stage of Gi (type 2, orange in Figure 1.18). Each loop of type 1 bounds a punctured
torus in the grope and its contribution to li is a commutator of the corresponding symplectic
circles. The surface Σi is then obtained by removing the disks bounded by loops of type 2
and gluing punctured tori embedded in D4 \Gc that are dual to caps as explained below.

Figure 1.19: Dual torus

We describe a dual torus to a cap c as a circle bundle over a circle, see Figure 1.19 for
an example. The base circle of the bundle is any meridian parallel to the other circle in
the symplectic pair containing ∂c and intersecting Gc in exactly one point of ∂c (α2 in the
example). The fibers are boundaries of disks in the normal bundle of the stage of G capped
by c (green tube in the example) restricted to the base circle chosen before. This torus T is
embedded in D4 and intersects Gc in exactly one point p′ ∈ c. Call now p ∈ c the unique
point of intersection of c with a surface Gj in the bottom stage of G given by definition of
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grope (for example the points p2, p4, p5 in Figure 1.18) and choose an embedded path u ⊂ c
connecting p and p′. The normal bundle of c ⊂ D4 restricted to u guides a connected sum of
T with the disk in Gj bounded by the loop γ of type 2 around p = c ∩ Gj (for example the
loops γ2, γ4, γ5 in Figure 1.18). This connected sum T ′ is a punctured torus bounding a type
2 loop γ and such that T ′ ∩ Gc = γ. By construction, this torus comes with two canonical
symplectic circles given by the base circle of the bundle and a fiber, and from Figure 1.19 is
clear that they are homotopic in D4 \Gc respectively to the dual circle of ∂c and a meridian
of to the boundary of the stage of G capped by c, so that γ is a commutator of the two in
π1(D4 \Gc) with an appropriate sign given by εp.

The proof ends with the observation that the inclusion S3 \ L ↪→ D4 \Gc induces

π1(D4 \Gc)n+1

π1(D4 \Gc)n+2

∼=
π1(S3 \ L)n+1

π1(S3 \ L)n+2

so the expansion in terms of commutators for li actually holds in the group on the right as
required. See [Dwy75] for more details about this isomorphism.
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CHAPTER 2

Twisting phenomena

2.1 Framing obstruction

We discuss here in a general setting the obstruction for a Whitney disk to be framed in di-
mension 4, this is one of the basic requirements for a successful Whitney move, see [Sco05]
for more details.

Let X be a smooth oriented 4-manifold and Σ1,Σ2 ⊂ X two oriented surfaces in generic
position intersecting in two points x′, x′′ with opposite signs (or two sheets of the same im-
mersed surface self-intersecting in these two points). Call φ : D2 → X an immersed Whitney
disk W pairing the intersections, then S1 = α∪ β arcs with α∩ β = {p′, p′′}, φ(p′) = x′ and
φ(p′′) = x′′, φ(α) ⊂ Σ1 and φ(β) ⊂ Σ2 embeddings. The normal bundle of φ is a 2-plane
bundle ν(φ)→ D2 whose fiber over q ∈ D2 is given by Tφ(q)X/ im(dq φ) and being a bundle
over a contractible base is trivial and hence its restriction ν(φ)|S1 is trivial too.

Figure 2.1: Whitney section

Choose two sections wα, wβ of ν(φ)|S1 along α, β with the following properties:

• wα and wβ have no zeros
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• wα is tangent to Σ1

• wβ is transverse to Σ2

• wα and wβ match in p′, p′′

The first condition guarantees that the two sections are transversal to the Whitney disk and
together with the second and third condition can always be fulfilled as shown in Figure 2.1.
The fourth condition is more subtle and can only be satisfied if x′ and x′′ have opposite signs.

These two sections glue to give a global section w of ν(φ)|S1 called Whitney section be-
cause of its special properties. This section extends to a nowhere vanishing section over D2 if
and only if [w] = 0 in π1(Gr1(R2)) ∼= Z. We point out that the Whitney section has always
an extension to D2 because π1(R2) = 0 but this could have zeros in the interior and this leads
to a failure of the Whitney move.

We call [w] = ω(W ) ∈ π1(Gr1(R2)) framing obstruction of the Whitney disk W and when
ω(W ) 6= 0 we say that the disk is twisted. We identify these classes with integer numbers via
the group isomorphism

π1(Gr1(R2))→ Z

[s] 7→ #(int(W ) ∩ s̃(int(W ))

where s̃ is a generic extension of s to the interior of W (some authors call this integer
relative Euler number of the normal bundle of W ). An argument along the lines of Propo-
sition 2 in Chapter 1 shows that if ∂W and s are in the same spherical slice of D4 then
#(int(W ) ∩ s̃(int(W )) = lk(∂W, s), where the linking number is measured in that spherical
slice.

Examples of twisted Whitney disks with arbitary framing obstruction can be produced via
twisted Bing doubling of a component K in a link. This operation consists in performing an
ordinary Bing doubling as explained in Section 1.3 but using an embedded circle K ′ in the
boundary ∂N(K) of a tubular neighborhood of the component K with lk(K,K ′) 6= 0 instead
of the usual longitude K ′ = l with lk(K, l) = 0.
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Figure 2.2: Framed and twisted Bing doubles of Hopf link

Figure 2.2 compares two Bing doubles of the Hopf link, the first is the usual untwisted
Bing double and the second is a twisted version. In both pictures the blue curve is the
boundary of a Whitney disk and the green curve is the boundary of a collar. The framing ob-
struction is computed by their linking number in the spherical slice of D4 where they both live.

We describe now a way to kill the framing obstruction at the cost of introducing a new
intersection point on the Whitney disk, this operation is called boundary twist or spinning of
the Whitney disk.
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Figure 2.3: Boundary twist

Consider a Whitney disk with ∂W = α ∪ β paring two sheets Σ1,Σ2 in the ambient
4-manifold X and choose a small interior arc α′ ⊂ α. The normal bundle N(α′) ⊂ X is a
trivial bundle diffeomorphic to D3 × [0, 1] and the movie in Figure 2.3 shows its intersection
with W ∪ w(W ) ∪ Σ1, where w(W ) is the image of W under any extension of its Whitney
section to the whole disk. Notice that such extension could have zeros in the interior but we
can shrink N(α′) to have N(α′) ∩W ∩w(W ) = ∅ and thus we don’t see intersection points
between W and w(W ) in the movie.

The boundary twist consists in removing int(N(α′)) and gluing in a new 4-ball D3×I given by
the movie in Figure 2.3. In the middle picture of the movie we see that the new violet Whitney
disk W ′ has exactly one new intersection point with the blue sheet Σ1 (red dot number 1) and
the green image of the Whitney section w(W ′) also gains such a new intersection with the
same sign (red dot number 3). The red dot number 2 is a newly created intersecion point in
W ′∩w(W ′) and it modifies the framing obstruction ω(W ′) = ω(W )±1 according to its sign.

If ω(W ) = k we can therefore arrange it to have k = 0 up to introducing |k| new inter-
section points in W ∩ Σ1. We point out that the same costruction can be carried on the
arc β ⊂ W ∩ Σ2 as well and thus we are free to distribute the new intersection points of W
among Σ1 and Σ2.
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2.2 4d interpretation of Arf invariant

The framing obstruction is related to the Arf invariant of knots. If K ⊂ S3 knot and F
Seifert surface, Arf(K) ∈ Z/2Z is defined as the Arf invariant of the quadratic form over
Z/2Z associated to the bilinear Seifert form on H1(F ;Z) reduced modulo 2. Figure 2.4 shows
how to expand this invariant as

Arf(K) ≡
g(F )∑
i=1

lk(α∗i , αi) lk(β∗i , βi) (mod 2)

where {αi, βi} is a symplectic basis of curves for H1(F ;Z) and ∗ denotes their images under
an outward nowhere vanishing field normal to F .

Figure 2.4: Arf invariant

This is a well defined invariant of knots because it does not depend on the chosen Seifert
surface F , in fact two different Seifert surfaces have S-equivalent Seifert forms, see [Kau87]
for more about this.

PROPOSITION 5. Any knot K ⊂ S3 bounds a Whitney tower of order 2 by allowing
twisted order 1 disks, furthermore for any such tower

Arf(K) ≡
∑
i

ω(Wi) (mod 2)

where the sum ranges over Wi order 1 disks in the tower.

Proof. Thanks to Proposition 1 of Chapter 1 we know that K bounds a generically immersed
disk D ⊂ D4 and this will be the only order 0 disk of the tower. To get a tower of order 2
we need to pair self-intersections of D with order 1 Whitney disks, a priori this is not possible
because D could have a different number of positive and negative self-intersections, but we
can fix this by adding kinks as decribed below.
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Figure 2.5: Adding kinks

A schematic picture in half the dimension is shown in Figure 2.5. More precisely, one
can remove the interior of a small 4-ball B(p) centered in a point of p ∈ D that is not of
self-intersection and glue in a new 4-ball B′(p) described as follows. B′(p) contains in its
interior a smaller 4-ball B′′(p) with two properly embedded disks intersecting in p with sign
±1 and whose boundaries in ∂B′′(p) form a Hopf link. This link bounds an annulus in ∂B′′(p)
and removing an open disk in the interior of this annulus we create a new unknotted boundary
component that can be glued with another annulus properly embedded in B′(p) \ int(B′′(p))
to the unknot ∂B(p) ∩D ⊂ ∂B(p) = ∂B′(p).

We can now choose W1, . . . ,Wk Whitney disks pairing order 0 intersections, these may have
nontrivial framing obstruction and thus we get a twisted Whitney tower of order 1. Thanks to
Proposition 4 of Chapter 1 this tower can be converted to a capped grope of class 2, whose
caps are now not necessarily framed or embedded because they come from order 1 Whitney
disks Wi that can be twisted and generically immersed.

The bottom stage of this grope is a properly embedded connected surface of genus k in
D4 whose boundary is K ⊂ S3, for each 1 ≤ i ≤ k we have a caps C ′i, C

′′
i bounding circles

of the symplectic basis αi, βi as in Figure 2.6
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Figure 2.6: Twisted cap

We have

Arf(K) ≡
k∑
i=1

lk(αi, α
∗
i ) lk(βi, β

∗
i ) ≡

k∑
i=1

(#(int(C ′i)∩D)+ω(C ′i))(#(int(C ′′i )∩D)+ω(C ′′i ))

Now C ′i intersects D in exactly one point and it’s framed thanks to how the groping procedure
works, C ′′i instead intersects D in #(int(Wi)∩D) and has framing ω(C ′′i ) = ω(Wi), therefore

Arf(K) ≡
k∑
i=1

(#(int(Wi) ∩D) + ω(Wi))

Now performing boundary twists as described in the previous section we can kill #(int(Wi)∩D)
while modifying ω(Wi) but their sum remains the same modulo 2 and we get

Arf(K) ≡
k∑
i=1

ω(Wi)

and #(int(Wi) ∩ D) = 0 tells that we can pair order 1 intersections with order 2 Whitney
disks, this gives the required twisted Whitney tower.

2.3 Twisted Whitney towers

Proposition 5 in the previous section suggests a new definition of Whitney tower in which the
framing condition is dropped. We call such towers twisted.

The general philosophy is that the goals of embedding and framing disks contrast each other
and we can use boundary twists to either kill framing obstructions while introducing new inter-
sections or to create cancelling mates for unpaired intersection points at the price of loosing
framing on disks.
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Figure 2.7: Twisted tower on Whitehead link

Figure 2.7 describes a Whitney towerW of order 1 on the Whitehead link and according to
Theorem 1 of Chapter 1 this cannot be raised as τ1(W) 6= 0. Nevertheless if we replace the or-
der 1 disk with a twisted Whitney disk we get a new twisted Whitney towerW ′ of higher order.

This example motivates the following extension of the obstruction theory of Chapter 1. A
twisted Whitney disk pairing sheets whose intersection trees are I and J has an associated
twisted tree

(I, J)∞ :=∞ −−< I
J

that keeps track of the fact that we cannot perform a successful Whitney move on that twisted
disk.

We define below a group of obstructions T ∞ analogous to T in the framed setting of Chapter
1. For a discussion on the meaning of its relations see [CST12].

DEFINITION 5. If n = 2k+1 then T ∞2k+1 is the quotient of T2k+1 by the subgroup generated
by

i −−< J
J

where J ranges over rooted trees of order k.
If n = 2k then T ∞2k is the free abelian group on trees of order 2k and ∞-trees of the form

J∞ :=∞−−J

where J ranges over rooted trees of order k, modulo the following relations:
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• AS and IHX relations on order 2k trees non containing the label ∞

• twisted symmetry relation (−J)∞ = J∞

• twisted IHX relation I∞ = H∞ +X∞ − 〈H,X〉

• interior twist relation 2J∞ = 〈J, J〉

Given W twisted Whitney tower of order n its intersection invariant is defined as

τ∞n (W) =
∑

εptp +
∑

ω(WJ)J∞ ∈ T ∞n

where the first sum is over all unpaired intersection points of order n and the second sum is
over all order n/2 Whitney disks WJ with twisting ω(WJ) ∈ Z.

The following theorem, whose proof can be found in [CST12], says that these are in fact
complete obstructions and is the analogous of Theorem 1 of Chapter 1 in the twisted setting.

THEOREM 4. Given L ⊂ S3 oriented link andW order n twisted Whitney tower on it then
τ∞n (W) = 0 if and only if L bounds an order n+ 1 twisted Whitney tower.

2.4 Concordance filtration

DEFINITION 6. For n ≥ 1, two oriented framed links L0, L1 are Whitney concordant of
order n if the i-th components of L0 ⊂ S3 × {0} and −L1 ⊂ S3 × {1} cobound a properly
immersed annulus Ai ⊂ S3 × [0, 1] for each i with the annuli in generic position and ∪Ai
supporting a twisted Whitney tower of order n.

Fixed m number of components, the set L of m-links has a filtration

· · · ⊆W∞3 ⊆W∞2 ⊆W∞1 ⊆ L

where W∞n is the set of those bounding a twisted Whitney tower of order n. We denote with
W∞n the quotient of W∞n modulo the equivalence relation given by Whitney concordance of
order n+ 1.

PROPOSITION 6. Band sum # defines a group operation on W∞n and this is abelian and
finitely generated.

Proof. The operation of band sum on oriented m-links was used in Theorem 2 of Chapter 1,
we give here a more precise description. If L1, L2 ⊂ S3 oriented links with m components,
form S3 as connected sum of two 3-spheres containing L1 and L2 along balls in their comple-
ments. Let β be a collection of m disjoint embedded bands joining the components of L1 to
those of L2 bijectively and oriented compatibly with the link orientations. Then L1#βL2 ⊂ S3

is the band-wise connected sum of each pair of components.

In contrast with the case of knots, for m > 1 the concordance class of L1#βL2 depends on β
but it turns out that it doesn’t on W∞n and we can then drop β. In fact, if L′1, L

′
2 ⊂ S3

are two other oriented m-links with [Li] = [L′i] ∈ W∞n then by definition of W∞n they
cobound a family of properly immersed annuli in S3 × [0, 1] supporting an order n + 1
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twisted Whitney tower V and taken Wi order n twisted Whitney tower bounding Li in D4

this can be extended by V to form an order n twisted Whtiney tower W ′i in D4 on L′i and
τ∞n (W ′i) = τ∞n (Wi) + τ∞n (V) = τ∞n (Wi) because τ∞n (V) = 0 by Theorem 4 in the previous
section. Now we want to show that [L1#βL2] = [L′1#β′L

′
2] ∈ W∞n .

Figure 2.8: How to glue Whitney towers and get a Whitney concordance

Observe that L1#βL2 bounds an order n twisted Whitney tower U obtained by performing
a boundary connected sum of two copies of D4 along the 3-balls in S3 used to build L1#βL2,
each copy contains the Whitney tower Wi on Li and τ∞n (U) = τ∞n (W1) + τ∞n (W2). Anal-
ogously L′1#β′L

′
2 bounds an order n twisted Whitney tower U ′ with τ∞n (U ′) = τ∞n (W ′1) +

τ∞n (W ′2). We have then

τ∞n (U) = τ∞n (W1) + τ∞n (W2) = τ∞n (W ′1) + τ∞n (W ′2) = τ∞n (U ′)

But now L1#βL2 and L′1#β′L
′
2 are connected by a Whitney concordance of order n+1 because

S3× [0, 1] is diffeomorphic to the connected sum of two 4-balls containing respectively U and
U ′, the connected sum is realized along 4-balls in the complement of the two towers and one
of the boundary spheres in the newly created S3× [0, 1] has opposite orientation with respect
to the one it had in its bounding 4-ball, see Figure 3.6 for a schematic description of this
procedure. Tubing the corresponding order 0 disks in U and U ′ one gets then an order n
Whitney concordance U with

τ∞n (U) = τ∞n (U)− τ∞n (U ′) = 0
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and again by Theorem 4 of previous section this says that U extends to a Whitney concordance
of order n+ 1 as required.

Band sum # is clearly associative and commutative and turns W∞n in a group with unit
the unlink and where the inverse of L is −L. The fact that it is finitely generated follows
from the existence of a surjective group homomorphism

T ∞n
R∞n−−→ W∞n

called twisted realization map in [CST12], this takes a twisted intersection tree t ∈ T ∞n and
returns a link bounding a twisted Whitney tower W of order n with τ∞n (W) = t. The key
ingredient to build this homomorphism is to adapt the framed realization procedure described
in Chapter 1 Section 1.5 to the twisted setting using a twisted version of the Bing doubling
construction.

The groups W∞n describe the twisted concordance filtration in the sense that if L ∈W∞n
then L ∈ W∞n+1 if and only if [L] = 0 ∈ W∞n . In three quarter of the cases the structure of
these groups is completely understood.

THEOREM 5. For m-links and n 6≡ 2 (mod 4)

W∞n
∼= Zmrn+1(m)−rn+2(m)

where

rn(m) =
1

n

∑
d|n

M(d)mn/d

and M is the Möbius function defined as M(d) = (−1)l(d) if d is square-free with l(d) prime
factors and M(d) = 0 if d has repeated prime factors.

Proof. There is a commutative diagram

T ∞n W∞n

Dn

R∞n

ηn µn

Here ηn is the group morphism that turns trees into brackets described in Chapter 1 Sec-
tion 1.7 extended to twisted trees via ηn(∞− J) = 1

2
ηn(J − J) (this division by 2 makes

sense in the Z-module Dn because all terms in ηn(J − J) have even coefficients) and this
assignement is compatible with the twisted relations of T ∞n .

If L is a link with [L] ∈ W∞n then it bounds a twisted Whitney tower W of order n by defini-
tion and a twisted extension of Theorem 3 in Chapter 1 (see [CST14]) says that µn(L) = 0
for k < n and µn(L) = ηn(τ∞n (W)). If L′ is another link with [L] = [L′] ∈ W∞n then
L#−L′ bounds a twisted Whitney tower of order n+1 by the group-theoretic considerations
of Proposition 6 above and

µn(L)− µn(L′) = ηn(τ∞n (L))− ηn(τ∞n (L′)) = ηn(τ∞n (L#− L′)) = 0
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This says that µn : W∞n → Dn is a well-defined group morphism. In the end of [CST12] is
proved that for n 6≡ 2 (mod 4) the map ηn is an isomorphism and therefore also R∞n and
ηn are. Finally, Orr [Orr89] shows that Dn is free of rank mrn+1 − rn+2 and this proves the
statement.

2.5 Higher Arf obstructions

The goal of this section is to describe the conjectural structure of W∞n for n ≡ 2 (mod 4).
In this case the commutative diagram of Theorem 5 in the previous section still exists but ηn
is no longer injective, the first step is then to understand its kernel.

PROPOSITION 7. For m-links and n = 4k − 2 we have

Ker(η4k−2) ∼= Zrk(m)
2

Proof. The domain group of η4k−2 : T ∞4k−2 → D4k−2 has obvious elements of 2-torsion (J, J)∞

with J rooted tree of order k − 1, in fact 2(J, J)∞ = 0 because of interior twist and IHX
relation in T ∞4k−2, in fact

2(J, J)∞ = 〈(J, J), (J, J)〉 = 〈−−< J
J , −−< J

J 〉 = J
J >−−< J

J = 0

Therefore 〈(J, J)∞〉 ⊆ Ker(η4k−2) because D4k−2 is free and we claim that actually they are
equal and furthermore 〈(J, J)∞〉 ∼= Z2 ⊗ Lk via (J, J)∞ 7→ 1 ⊗ J (we identify here rooted
trees with commutators as usual). This will prove the statement because it’s known that
Lk ∼= Zrk(m), see [Reu93] for a discussion of basis of free Lie algebras and their connection
to the combinatorics of Lyndon words.

The claim is equivalent to say that in the following diagram the top row is a short exact
sequence and the vertical morphism on the left is an isomorphism.

0 〈(J, J)∞〉 T ∞4k−2 D4k−2 0

0 Z2 ⊗ Lk D∞4k−2 D4k−2 0

η4k−2

sq∞4k−2 p4k−2

(J, J)∞ 7→ 1⊗ J η∞4k−2 id

In this diagram a new group D∞4k−2 appears and also the maps in or out of it are new. The
idea is to modify the target group of η4k−2 and lift it to a map η∞4k−2 that is an isomorphism.
The new target group is defined as a pullback of abelian groups.

D∞4k−2 D4k−2

Z2 ⊗ L′2k Z2 ⊗ L2k

p4k−2

sl4k−2
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In this diagram L′2k is the degree 2k part of the free quasi-Lie algebra on m generators.
This differs from the usual free Lie algebra in that the relation [x, x] = 0 is replaced by
[x, y] = −[y, x]. We point out that this is a relevant modification because we are working
over the ground ring Z and thus the two are not equivalent. In fact the first relation implies
the second, this guarantees that the identity map induces a well-defined morphism of groups
L′2k → L2k and we use this to define the lower horizontal map in the previous square.

The map sl4k−2 is way more difficult to describe, in fact it comes from the following dia-
gram.

0 D′4k−2 D4k−2

0 0 L′1 ⊗ L′4k−1 L1 ⊗ L4k−1 0

0 Z2 ⊗ L2k L′4k L4k 0

Z2 ⊗ L2k 0 0

sq4k

[·, ·] [·, ·]

id

Here sq4k(1⊗x) = [x, x] is not the zero map because the target is a quasi-Lie algebra and
it completes the natural map L′4k → L4k to a short exact sequence according to the work of
Levine on free quasi-Lie algebras [Lev06]. The short sequence above it is also exact because
it’s known that the natural map L′n → Ln is an isomorphism for n odd, again by Levine’s
work. The first and last rows are respectively kernels and cokernels and the snake lemma
connect them in an exact sequence through a surjective morphism sl4k−2 : D4k−2 → Z2⊗ L2k

as required.

The map sq∞4k−2 in the first diagram is uniquely determined by the condition that it com-
pletes the first row of the following diagram to a short exact sequence and the universal
property of the pullback square on the right.
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0 Z2 ⊗ Lk D∞4k−2 D4k−2 0

0 Z2 ⊗ Lk Z2 ⊗ L′2k Z2 ⊗ L2k 0

sq∞4k−2 p4k−2

sq2k

id sl4k−2

The proof ends by looking at the first diagram. The map (J, J)∞ 7→ 1⊗ J is an isomor-
phism by direct calculation and this also implies that the first row is exact using the fact the
second row is exact by the construction above.

Now being η4k−2 not injective the maps R∞4k−2 and µ4k−2 could have nontrivial kernel.
What we know for sure is that there is a short exact sequence

0→ Ker(µ4k−2)→ W∞4k−2 → D4k−2 → 0

and it splits because D4k−2 is free, thus

W∞4k−2
∼= D4k−2 ⊕Ker(µ4k−2)

The following conjecture was formulated by Conant, Schneiderman and Teichner in [CST11]

CONJECTURE 1. The map R∞4k−2 : T ∞4k−2 → W∞4k−2 is an isomorphism, consequently
Ker(µ4k−2) ∼= Ker(η4k−2) and by Theorem 5 and Proposition 7 above

W∞4k−2
∼= Zmr4k−1(m)−r4k(m) ⊕ Zrk(m)

2

Here is a table of how the groups W∞n (m) should appear for low n (rows) and m (columns)
in this conjectural picture

1 2 3 4 5
0 Z Z3 Z6 Z10 Z15

1 0 0 Z Z4 Z10

2 Z2 Z⊕ Z2
2 Z6 ⊕ Z3

2 Z20 ⊕ Z4
2 Z50 ⊕ Z5

2

3 0 0 Z6 Z36 Z126

4 0 Z3 Z28 Z146 Z540

5 0 0 Z36 Z340 Z1740

6 0 Z6 ⊕ Z2 Z126 ⊕ Z3
2 Z1200 ⊕ Z6

2 Z7050 ⊕ Z10
2

The first row of this table can be read as the fact that the only obstructions to rise an
order 0 twisted Whitney tower on a framed m-link are the framings of its components and
the pairwise linking numbers, a total of

m+

(
m

2

)
=
m(m+ 1)

2

integers. The second row tells us that there are
(
m
3

)
integer obstructions to rise an order 1

twisted Whitney tower, these were previously known in literature as triple linking numbers.
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Coherently with Proposition 5, there is no obstruction for knots to build an order 2 twisted
Whitney tower, but to rise it the classical Arf invariant of knots must vanish.

In general, it can be shown that for m-links the torsion factors correspond to the classi-
cal Arf invariant of each component and this verifies the conjecture for 4k − 2 = 2. This
suggests the existence of a new class of concordance invariants Arfk with values in Zrk(m)

2 .
These invariants should describe the obstruction to rise a twisted Whitney tower of order
4k − 2.

DEFINITION 7. For k ≥ 1 the higher-order Arf obstructions are defined as

Arfk = (R
∞
4k−2)−1 : Ker(µ4k−2)→ Ker(η4k−2)

Ker(R∞4k−2)

where R
∞
4k−2 is the quotient map of R∞4k−2 : Ker(η4k−2) → Ker(µ4k−2), well-defined and

surjective by commutativity of the triangle in Theorem 5.

Observe that conjecturally Arfk should be simply the inverse of R∞4k−2 restricted to
Ker(µ4k−2), but the definition above is more complicated because there is no proof yet that
R∞4k−2 is injective. We emphasize that also in the conjectural picture Arfk is not defined for
all links, but only for links with suitable vanishing Milnor invariants.
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CHAPTER 3

Quantum concordance invariants from sl2

3.1 String links

A string link L ⊂ D2 × [0, 1] is the image of a smooth proper embedding φ : t[0, 1] ↪→
D2× [0, 1] such that, called φi its restriction to the ith interval, we have φi(0) = pi×{0} and
φi(1) = pi × {1} for every i, here pi ∈ D2 are fixed interior points and 1 ≤ i ≤ m where m
is the number of components Li of the string link. We are interested in distinguishing them
as embeddings up to ambient isotopies of D2 × [0, 1] fixing the endpoints, i.e. we consider
L,L′ ⊂ D2× [0, 1] equal if there is a smooth map H : D2× [0, 1]× [0, 1]→ D2× [0, 1] such
that H(·, ·, 0) = idD2×[0,1], H(·, ·, 1)(L) = L′ and H(·, ·, t) is a diffeomorphism of D2× [0, 1]
that fixes the points pi × {0} and pi × {1} for every i and t. A string link is trivial if it is
equal in the previous sense to the string link given by ti 7→ (pi, ti) on every component.

Figure 3.1: Closure

Given a string link L we can form its closure cl(L) ⊂ S3, this is a link as defined in Chapter
1. See Figure 3.1 for a description of this operation. Conversely, one can also open a link in
order to get a string link as follows.

40



PROPOSITION 8. Every link in S3 is the closure of a string link in D2 × [0, 1].

Proof. Call D ⊂ R2 a planar diagram of the link, then R2 \ D is union of exactly one un-
bounded connected component E together with finitely many bounded connected components
homeomorphic to open disks. Pick a point a in one of these and another point b ∈ E, if we
show that there exists an embedded path γ ⊂ R2 connecting a and b and intersecting each
link component in D exactly once then D \ γ will be a planar diagram of a string link whose
closure is the original link. The example in Figure 3.2 shows how starting from a one can
get trapped in one of the bounded regions without any way to avoid to intersect a previously
crossed component.

Figure 3.2: Sliding

Anyway, one can remove such a repeated intersection by sliding the obstructing component
along γ up to the point a, passing over any other part of the diagram if needed. This modifies
D into a new diagram D′ through finitely many Reidemeister moves and thus D′ represents
a link isotopic to the original one in S3 thanks to Reidemeister’s theorem. Proceeding in this
way we eventually get the required path γ.

In what follows, we will consider oriented framed string links, they are proper embeddings
φ : t([0, 1] × [0, 1]) ↪→ D2 × [0, 1] such that φi(0,−) = li × {0} and φi(1,−) = li × {1}
for every i, here li ⊂ D2 are fixed segments disjointly embedded in the interior of D2. The
closure of an oriented framed string link is analogous to the unframed one and gives a framed
link in S3.

We distinguish oriented framed string links up to isotopies preserving the framings, Figure
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3.3 below shows an example of string links that are isotopic but not isotopic as framed string
links.

Figure 3.3: Framed string links

A planar diagram for a string link specifies a framing given by an outward vector field
normal to the plane. If not specified, we will assume that a diagram describes a framed string
link with this conventional framing.

3.2 Hopf algebras

In this section we introduce a class of algebras that will be used later to construct invariants
of string links.

DEFINITION 8. Fixed κ commutative ring with unit, a κ-algebra A with unit is called
bialgebra if it has a compatible coalgebra structure, this means it is endowed with the following
morphisms of κ-algebras

• ∆ : A→ A⊗A called comultiplication, the multiplication of A is denoted m : A⊗A→
A
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• ε : A→ κ called counit, the unit of A is denoted i : κ→ A and i(1) = 1A

We require that they make the following diagrams commutative

A⊗ A

A A

A⊗ A

∆ ε⊗ idA

idA

∆ idA⊗ε

A⊗ A

A A⊗ A⊗ A

A⊗ A

∆ ∆⊗ idA

∆ idA⊗∆

A bialgebra is Hopf if it has a κ-linear map S : A → A called antipode such that the
following diagram commutes

A⊗ A A⊗ A

A κ A

A⊗ A A⊗ A

S ⊗ idA

∆ m

ε i

∆ m

idA⊗S

We are interested in a particular class of Hopf algebras. We say that A is quasi-triangular
if it has a universal R-matrix, i.e. an element R ∈ A ⊗ A such that called R =

∑
αi ⊗ βi

one has

• R invertible

• (P ◦∆)(x) = R∆(x)R−1 where P (a1 ⊗ a2) = a2 ⊗ a1

• (∆⊗ id)(R) = R13R23 where R23 = 1⊗R and R13 =
∑
αi ⊗ 1⊗ βi

• (id⊗∆)(R) = R13R12 where R12 = R⊗ 1

SWEEDLER’S NOTATION

For x ∈ A we write the element ∆(x) =
∑

i x
′
i ⊗ x′′i ∈ A⊗ A as the sum

∆(x) =
∑
(x)

x′ ⊗ x′′

The coassociativity of A gives in this notation the following identity

∑
(x)

∑
(x′)

(x′)′ ⊗ (x′)′′

⊗ x′′ = ∑
(x)

x′ ⊗

∑
(x′′)

(x′′)′ ⊗ (x′′)′′
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and we therefore write simply

∆(2)(x) =
∑
(x)

x′ ⊗ x′′ ⊗ x′′′

The counitality of A reads instead∑
(x)

ε(x′)x′′ = x =
∑
(x)

x′ε(x′′)

If A,B are bialgebras the set of κ-linear maps Homκ(A,B) is a group with respect to the
convolution operation defined as

f ∗ g = mB ◦ (f ⊗ g) ◦∆A

this reads in Sweedler’s notation as

(f ∗ g)(x) =
∑
(x)

f(x′)g(x′′)

The unit in this group is iBεA The following proposition summarizes the key properties of
quasi-triangular Hopf algebras that will be used later.

PROPOSITION 9. Given a quasi-triangular Hopf algebra A with R-matrix R and antipode
S

1. S(xy) = S(y)S(x) for all x, y ∈ A

2. R−1 = (S ⊗ id)(R) = (id⊗S−1)(R)

3. (S ⊗ S)(R) = R

4. S2(x) = uxu−1 for all x ∈ A

5. R12R13R23 = R23R13R12 (Yang-Baxter equation)

Proof. (1) Define ν, ρ ∈ Homκ(A ⊗ A,A) as ν(x ⊗ y) = S(y)S(x) and ρ(x ⊗ y) = S(xy),
then the claim is equivalent to ν = ρ. Being Homκ(A ⊗ A,A) a group with respect to
convolution, this is equivalent to prove ρ ∗m = m ∗ ν = iAεA⊗A

(ρ ∗m)(x⊗ y) =
∑

(x⊗y)

ρ((x⊗ y)′)m((x⊗ y)′′)

=
∑

(x),(y)

ρ(x′ ⊗ y′)m(x′′ ⊗ y′′)

=
∑

(x),(y)

S(x′y′)x′′y′′

=
∑
(xy)

S((xy)′)(xy)′′ = iε(x⊗ y)
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In the computation above, we used that the coproduct of A⊗ A is given by ∆(x⊗ y) =
(id⊗P ⊗ id)(∆ ⊗∆)(x ⊗ y) to get from the first to the second line, the definition of ρ to
get from the second to the third line, the fact that ∆(ab) = ∆(a)∆(b) given by the bialgebra
structure of A to get from third to the fourth line, the last equality uses S ∗ id = iε and
this is just the hexagon relation that holds in any Hopf algebra in a compact form. Similar
arguments justify the following computation

(m ∗ ν)(x⊗ y) =
∑

(x⊗y)

m((x⊗ y)′)ν((x⊗ y)′′)

=
∑

(x),(y)

x′y′S(y′′)S(x′′)

=
∑
(x)

x′

∑
(y)

y′S(y′′)

S(x′′)

=
∑
(x)

x′iε(y)S(x′′) = iε(x)iε(y) = iε(xy)

(2) We start by observing that (ε⊗ id)(R) = 1 = (id⊗ε)(R). In fact by counit definition
(ε⊗ id)∆ = id, by quasi-triangular property (∆⊗ id)(R) = R13R23. These two facts together
give

R = (id⊗ id)(R) = ((ε⊗ id)∆⊗ id)(R) = (ε⊗ id⊗ id)(∆⊗ id)(R)

= (ε⊗ id⊗ id)(R13R23) = (ε⊗ id⊗ id)(R13)ε(1)R = (ε⊗ id)(R)R

and multiplying by R−1 on both sides we get (ε⊗ id)(R) = 1, the other is analogous.
Now hexagon relation of Hopf algebras says that m(S ⊗ id)∆(x) = ε(x)1 for all x ∈ A, this
implies together with the previous observation that

(m⊗ id)(S ⊗ id⊗ id)(∆⊗ id)(R) = (m(S ⊗ id)∆⊗ id)(R) = (ε⊗ id)(R) = 1

Using this identity we obtain

1 = (m⊗ id)(S ⊗ id⊗ id)(∆⊗ id)(R) = (m⊗ id)(S ⊗ id⊗ id)(R13)S(1)R

= (S ⊗ id)(R)S(1)R = (S ⊗ id)(R)R

The last equality depends on the fact that, using 1), we have S(1) = S(11) = S(1)S(1)
and being S invertible S(1) = 1. Multiplying the previous identity on both sides by R−1 we
get (S ⊗ id)(R) = R−1 and a similar argument shows that (id⊗S−1)(R) = R−1.

(3) Using the previous point we get

(S ⊗ S)(R) = (id⊗S)(S ⊗ id)(R) = (id⊗S)(R−1)

= (id⊗S)(id⊗S−1)(R) = (id⊗ id)(R) = R
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(4) Quasi-triangular property of A gives P∆(x) = R∆(x)R−1 for all x ∈ A. Then we have
for all y ∈ A⊗ A with y = y1 ⊗ y2 that

(P∆⊗ id)(y)(R⊗ 1) = (R∆(y1)R−1 ⊗ y2)(R⊗ 1)

= R∆(y1)⊗ y2 = (R⊗ 1)(∆⊗ id)(y)

Applying now this identity to y = ∆(x) =
∑

(x) x
′⊗ x′′ we get that the following identity

[A]

(P∆⊗ id)

∑
(x)

x′ ⊗ x′′
(∑

i

αi ⊗ βi ⊗ 1

)
=

=

∑
(x)

x′′ ⊗ x′ ⊗ x′′′
(∑

i

αi ⊗ βi ⊗ 1

)
=

=
∑
(x),i

x′′αi ⊗ x′βi ⊗ x′′′

must agree with the following identity [B]

(R⊗ 1)(∆⊗ id)

∑
(x)

x′ ⊗ x′′
 =

(∑
i

αi ⊗ βi ⊗ 1

)∑
(x)

x′ ⊗ x′′ ⊗ x′′′
 =

=
∑
(x),i

αix
′ ⊗ βix′′ ⊗ x′′′

Putting [A] = [B] and applying to both sides the map A ⊗ A ⊗ A → A that applies
id⊗S ⊗ S2 and then multiplies tensors from right to left we get∑

(x),i

S2(x′′′)S(x′βi)x
′′αi =

∑
(x),i

S2(x′′′)S(βix
′′)αix

′

and using 1) we obtain∑
(x),i

S2(x′′′)S(βi)S(x′)x′′αi =
∑
(x),i

S2(x′′′)S(x′′)S(βi)αix
′

We now prove that LHS=S2(x)u and RHS=ux and thus the claim. For the left hand side

∑
(x)

S(x′)x′′ ⊗ x′′′ =
∑
(x)

ε(x′)1⊗ x′′ = 1⊗

∑
(x)

ε(x′)⊗ x′′
 = 1⊗ x

where we used the hexagon relation S ∗ id = iε for the first equality and the counit property
(ε⊗ id)∆ = id for the last equality. Applying id⊗S2 to the previous identity we get∑

(x)

S(x′)x′′ ⊗ S2(x′′′) = 1⊗ S2(x)
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and multiplying both sides on the right by
∑

i αi ⊗ S(βi) we have∑
(x),i

S(x′)x′′αi ⊗ S2(x′′)S(βi) =
∑
i

αi ⊗ S2(x)S(βi)

Now recall that by definition u =
∑

i S(βi)αi and therefore

S2(x)u =
∑
i

S2(x)S(βi)αi =
∑
(x),i

S2(x′′′)S(βi)S(x′)x′′αi

the last equality follows by applying mP to both sides of the previous identity. For the right
hand side∑

(x)

x′ ⊗ S(x′′S(x′′′)) =
∑
(x)

x′ ⊗ S(ε(x′′)1) =
∑
(x)

x′ε(x′′)⊗ S(1) = x⊗ 1

where the first equality uses 1) and the hexagon relation id ∗S = iε, the last equality uses the
counit property (id⊗ε)∆ = id and the already mentioned fact that S(1) = 1. Multiplying on
the left both sides of the last identity by u⊗ 1 we get∑

(x)

ux′ ⊗ S2(x′′′)S(x′′) = ux⊗ 1

and by definition of u this is equivalent to∑
(x),i

S(βi)αix
′ ⊗ S2(x′′′)S(x′′) = ux⊗ 1

Applying now mP to both sides we finally get

ux =
∑
(x),i

S2(x′′′)S(x′′)S(βi)αix
′

(5) Using the properties of quasi-triangular algebra R13R23 = (∆ ⊗ id)(R) and R∆(x) =
P∆(x)R we have

R12R13R23 = (R⊗ 1)(∆⊗ id)(R) =
∑
i

(R⊗ 1)(∆(αi)⊗ βi)

=
∑
i

R∆(αi)⊗ βi =
∑
i

P∆(αi)R⊗ βi

= (P ⊗ id)(∆⊗ id)(R)(R⊗ 1) = (P ⊗ id)(R13R23)(R⊗ 1) = R23R13R12

The last equality follows from the definition of R12 and the following computation

(P ⊗ id)(R13R23) = (P ⊗ id)

(∑
i

αi ⊗ 1⊗ βi

)(∑
j

1⊗ αj ⊗ βj

)

= (P ⊗ id)

(∑
i,j

αi ⊗ αj ⊗ βiβj

)
=
∑
i,j

αj ⊗ αi ⊗ βiβj

=

(∑
i

1⊗ αi ⊗ βi

)(∑
j

αj ⊗ 1⊗ βj

)
= R23R13
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A quasi-triangular Hopf algebra (A,R) is ribbon if called u =
∑
S(βi)αi there is a special

square root of S(u)u, more precisely if there exists v ∈ A such that

• v2 = S(u)u

• v is central in A

• ∆(v) = (v ⊗ v)(R21R)−1 where R21 =
∑
βi ⊗ αi

• S(v) = v

• ε(v) = 1

3.3 Universal quantum invariants

We decribe now the construction of an invariant of framed string links with m components
QA with values in A⊗m. This is an adaptation to string links of the original definition of
universal quantum A-invariant due to Lawrence [Law89, Law90].

Given an oriented string link with m components L ⊂ D2 × [0, 1] it admits a sliced dia-
gram, i.e. a planar diagram made up of stacked slices, each one containing finitely many
elementary tangles (see Figure 3.4) and with at most one of them different from a vertical
straight line.

Figure 3.4: Elementary tangles

A theorem of Turaev [Tur90] analogous to Reidmeister’s theorem for links says that two
sliced diagrams describe the same framed string link if and only if they differ by finitely many
moves in the set of Figure 3.5
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Figure 3.5: Turaev moves

We define QA(L) by giving its values on elementary tangles as in Figure 3.6, then com-
puting the product in A of elements labelling the marked points on a component of L in the
reverse order specified by the orientation and then tensoring the results of each component
to get an element in A⊗m.
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Figure 3.6: Quantum invariant

THEOREM 6. Given L ⊂ D2× [0, 1] oriented framed string link and (A,R, v) ribbon Hopf
algebra, QA(L) ∈ A⊗m only depends on the isotopy class of L as oriented framed string link.

Proof. By Turaev’s theorem, it suffices to prove that QA(L) does not change if computed
using two sliced diagrams of L differing by finitely many Turaev moves.

(T1) QA has value 1 on straight lines by definition, this guarantees that stacking trivial
tangles doesn’t change its value.

(T2) If D1, D2 are two sliced diagrams and D1⊗D2 is their juxtaposition thenQA(D1⊗D2) =
QA(D1)⊗QA(D2) because there are no crossings between strings of different diagrams. Then
QA has the same value on the two diagrams of the move because they only differ by (T1)
moves on the two halves.

(T3) Invariance under this move depends on the definition of QA on maxima/minima, see
Figure 3.7
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Figure 3.7: T3 invariance

(T4) The value of QA on the two diagrams involved in this move are computed as in
Figure 3.8

Figure 3.8: T4 invariance

To prove that they agree, first notice that (u⊗ u)R = R(u⊗ u) because

(u⊗ u)R =
∑
i

uαi ⊗ uβi =
∑
i

S2(αi)u⊗ S2(βi)u =

= (S2 ⊗ S2)(R)(u⊗ u) = R(u⊗ u)

where we used properties 3) of the previous proposition for the second equality and 2) for the
last equality. This fact, together with the fact that v ∈ A is central by definition of ribbon
algebra gives ∑

i

uv−1αivu
−1 ⊗ uv−1βivu

−1 =
∑
i

uαiu
−1 ⊗ uβiu−1 =
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= (u⊗ u)R(u−1 ⊗ u−1) = R(u⊗ u)(u−1 ⊗ u−1) = R

(T5) Figure 3.9 shows how to split one of the two non-straight diagrams D in this move
in two stacked subdiagrams D1, D2, we write this as D = D2D1. The other non-straight
diagram splits as D′ = D1D2.

Figure 3.9: T5 invariance

Then QA(D2D1) = QA(D2)QA(D1) and QA(D1D2) = QA(D1)QA(D2) and we show
that QA(D1) = v and QA(D2) = v−1.

QA(D2) =
∑
i

βiuv
−1αi = v−1

∑
i

βiuαi = v−1u
∑
i

S−2(βi)αi

where the second equality uses that v (and thus v−1 is central and the third depends on
property 4) in the previous proposition. Now using property 2) of the proposition we get

u−1 =
∑
i

S−1(β′i)α
′
i = mP (id⊗S−1)R−1 = mP (id⊗S−1)(S ⊗ id)(R) =

= mP (S ⊗ S−1)(R) = mP (id⊗S−2)(S ⊗ S)(R) = mP (id⊗S−2)(R) =
∑
i

S−2(βi)αi
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and this concludes the proof that QA(D2) = v−1uu−1 = v−1. Analogously we have

QA(D1) =
∑
i

α′iuv
−1β′i = v−1

∑
i

α′iuβ
′
i = v−1u

∑
i

S−2(α′i)β
′
i

Now using again 2) we have∑
i

S−2(α′i)β
′
i = m(S−2 ⊗ id)R−1 = m(S−2 ⊗ id)(S ⊗ id)(R) =

= m(S−1 ⊗ id)(R) =
∑
i

S−1(αi)βi

Finally, using a combination of 2) and 1) in the proposition we get∑
i

S−1(αi)βi = m(S−1 ⊗ id)(R) = m(S−1 ⊗ id)(S2 ⊗ S2)(R) =

= m(S ⊗ S2)(R) =
∑
i

S(αi)S
2(βi) =

∑
i

S(S(βi)αi) = S(u)

and this concludes the proof that QA(D1) = v−1uS(u) = v−1v2 = v, here we used the fact
that v2 = S(u)u by definition of ribbon algebra and that S(u)u = uS(u) by property 4) in
the previous proposition.

(T6) Invariance under this move depends on invertibility of the R-matrix.

Figure 3.10: T6 invariance

The value of QA on the diagram in Figure 3.10a is∑
i,j

α′jαi ⊗ β′jβi = R−1R = 1⊗ 1
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and its value on the diagram in Figure 3.10b is∑
i,j

βjβ
′
i ⊗ αjα′i = P (R)P (R−1) = P (RR−1) = P (1⊗ 1) = 1⊗ 1

(T7) We show that the value of QA on the diagram in Figure 3.11 is 1⊗ 1.

Figure 3.11: T7 invariance

Using the properties proved in the previous proposition we have∑
i,j

αjα
′
i ⊗ uv−1β′ivu

−1βj =
∑
i,j

αjα
′
i ⊗ uβ′iu−1βj =

∑
i,j

αjα
′
i ⊗ S2(β′i)βj) =

=
∑
i,j

αjα
′
i ⊗ S(S−1(βj)S(β′i)) = (id⊗S)

[∑
i,j

αjαi ⊗ S−1(βj)S(β′i)

]
=

= (id⊗S)
[
(id⊗S−1)(R)(id⊗S)(R−1)

]
= (id⊗S)(R−1R) =

= (id⊗S)(1⊗ 1) = 1⊗ S(1) = 1⊗ 1

(T8) Invariance under this move follows from the fact that the values of QA on the two
diagrams equal the two sides of the Yang-Baxter equation satisfied by the R-matrix, see
Figure 3.12.
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Figure 3.12: T8 invariance

In detail

R12R13R23 = (R⊗ 1)

(∑
j

αj ⊗ 1⊗ βj

)
(1⊗R) =

∑
i,j,k

αiαj ⊗ βiαk ⊗ βjβk

and

R23R13R12 = (1⊗R)

(∑
j

αj ⊗ 1⊗ βj

)
(R⊗ 1) =

∑
i,j,k

αjαk ⊗ αiβk ⊗ βiβj

3.4 Drinfeld algebra Uh(sl2)

In this section we introduce an example of ribbon Hopf algebra originally due to Drinfeld and
called Uh(sl2) or h-adic quantized enveloping algebra of sl2, [Dri87] contains a description of
this algebra and a more general overview of the philosophy of quantum groups. We point out
that this is not what is usually called quantized enveloping algebra of sl2 by many authors,
for example [Jan95].

The construction takes place in the category of complete h-adic algebras over κ = Q[[h]].
The objects of this category are topological algebras A with respect to the topology whose
open sets are x+ hnA for x ∈ A and n ∈ N and such that every Cauchy sequence converges
to a limit. The morphisms of this category are continuous morphisms of Q[[h]]-algebras. All
definitions and results of previous section specialize to this category by asking algebras to have
the h-adic topology, maps to be continuous and taking completions.

Let Q[[h]] be the ring of formal power series with rational coefficients and form F free
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associative Q[[h]]-algebra with unit on the set {E,F,H}. Let (h) ⊂ Q[[h]] be the ideal
generated by h and put on F the h-adic topology. Define

q = exp(h) =
∞∑
n=0

hn

n!
∈ Q[[h]]

K = exp

(
hH

2

)
=
∞∑
n=0

hn

n!2n
Hn ∈ F̂

The h-adic quantized enveloping algebra Uh = Uh(sl2) of sl2 is then the complete h-adic
algebra obtained by taking the quotient of F̂ by the closure of the ideal generated by the
following relations

HE = E(H + 2), HF = F (H − 2), EF − FE =
K −K−1

q1/2 − q−1/2

This quotient is again a topological Q[[h]]-algebra with respect to the quotient topology and
this is the same as the h-adic topology, for this technical point see Chapter I page 39 Theorem
5.21 in [War93]. Finally, take the completion of this.

We will now describe a structure of ribbon Hopf algebra on Uh = Uh(sl2).

PROPOSITION 10. There exists a unique morphism of complete h-adic Q[[h]]-algebras
∆ : Uh → Uh ⊗ Uh such that

∆(E) = E ⊗ 1 +K ⊗ E
∆(F ) = F ⊗K−1 + 1⊗ F
∆(H) = H ⊗ 1 + 1⊗H

furthermore ∆ satisfies the coassociativity condition.

Proof. If such a morphism exists then it’s unique because {E,F,H} generate a dense subal-
gebra of Uh by definition. On the other hand we can define ∆ on these generators as in the
statement and get a morphism of Q[[h]]-algebras F → Uh ⊗ Uh, then extend by continuity
to a morphism F̂ → Uh ⊗ Uh of h-adic Q[[h]]-algebras and define ∆ : Uj → Uh ⊗ Uh to be
the quotient morphism. For this last step we must check that ∆ vanishes on the closed ideal
generated by the three relations defined above.

∆(HE − EH − 2E) = ∆(H)∆(E)−∆(E)∆(H)− 2∆(E) =

= HE ⊗ 1 +HK ⊗ E + E ⊗H +K ⊗HE − EH ⊗ 1

− E ⊗H −KH ⊗ E −K ⊗ EH − 2E ⊗ 1− 2K ⊗ E =

= (HK −KH)⊗ E = 0

The last equality holds because HK = KH being K a sum of powers of H.

∆(HF − FH + 2F ) = ∆(H)∆(F )−∆(F )∆(H) + 2∆(F ) =

= HF ⊗K−1 +H ⊗ F + F ⊗HK−1 + 1⊗HF − FH ⊗K−1

− F ⊗K−1H −H ⊗ F − 1⊗ FH + 2F ⊗K−1 + 21⊗ F =

= F ⊗ (HK−1 −K−1H) = 0
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The last equality holds because HK−1 = K−1H being K−1 a sum of powers of H. For the
third relation, a preliminary observation is that using continuity of ∆ and ⊗ we have

∆(K) = ∆

(
∞∑
n=0

hn

n!2n
Hn

)
=
∞∑
n=0

hn

n!2n
∆(H)n =

=
∞∑
n=0

hn

n!2n

(
n∑
k=0

(
n

k

)
Hk ⊗Hn−k

)
=
∑
n,k

hn+k

n!k!2n+k
Hn ⊗Hk =

=

(
∞∑
n=0

hn

n!2n
Hn

)(
∞∑
k=0

hk

k!2k
Hk

)
= K ⊗K

and ∆(K−1) = K−1 ⊗K−1. Now

∆((q1/2 − q−1/2)(EF − FE)−K −K−1) =

= (q1/2 − q−1/2)[(E ⊗ 1 +K ⊗ E)(F ⊗K−1 + 1⊗ F )

− (F ⊗K−1 + 1⊗ F )(E ⊗ 1 +K ⊗ E)]−K ⊗K +K−1 ⊗K−1 =

= (q1/2 − q−1/2)[(EF − FE)⊗K−1 +K ⊗ (EF − FE)

+KF ⊗ EK−1 − FK ⊗K−1E]−K ⊗K +K−1 ⊗K−1 =

= (q1/2 − q−1/2)[
1

q1/2 − q−1/2
(K ⊗K−1 −K−1 ⊗K−1

+K ⊗K −K ⊗K−1) +KF ⊗ EK−1 − FK ⊗K−1E]

−K ⊗K +K−1 ⊗K−1 = 0

in the last equality we used that KF = q−1FK and K−1E = q−1EK−1 as one can check
by direct computation from the definitions. For coassociativity, it suffices to check it on
generators and this is computation is analogous to the ones above.

PROPOSITION 11. There exists a unique morphism of complete h-adic Q[[h]]-algebras
ε : Uh → Q[[h]] such that

ε(E) = 0

ε(F ) = 0

ε(H) = 0

furthermore ε satisfies the counitality condition.

Proof. This is analogous to the previous proposition. To check compatibility with relations
and the counitality condition is useful to note that by continuity of ε we have

ε(K) = ε

(
∞∑
n=0

hn

n!2n
Hn

)
=
∞∑
n=0

hn

n!2n
ε(H)n = 1
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PROPOSITION 12. There exists a unique antimorphism of complete h-adic Q[[h]]-algebras
S : Uh → Uh such that

S(E) = −K−1E

S(F ) = −FK
S(H) = −H

furthermore it satisfies the hexagon condition.

Proof. This is analogous to the propositions above. To check compatibility with relations and
hexagon condition is useful to note that by continuity of S we have

S(K) = S

(
∞∑
n=0

hn

n!2n
Hn

)
=
∞∑
n=0

(−1)nhn

n!2n
Hn = K−1

These propositions prove that (Uh,∆, ε, S) is a Hopf algebra. In [Hab08] Habiro gives
an R-matrix and a ribbon element that make it a ribbon Hopf algebra

v = exp

(
h

2

)
R = exp

(
h

4
H ⊗H

)( ∞∑
n=0

vn(n−1)/2 (v − v−1)n

[n]!
F n ⊗ En

)
We conclude this section with some remarks about the structure of Uh that should clarify

its relation with the enveloping algebra of the Lie algebra sl2 and will be useful later.

Recall that sl2 is the Lie algebra (over Q in our case) whose basis as vector space is given by
{E,F,H} and bracket defined by

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H

Its universal enveloping algebra U(sl2) is the smallest associative Q-algebra with unit in which
one can embed sl2 as a Lie algebra, where the bracket on U(sl2) is induced by its product
[x, y] = xy−yx. For precise definitions and background on Lie algebras we refer to [Hum72].
We have

Uh/hUh ∼= U(sl2)

as Q-algebras, an isomorphism is realized by mapping E 7→ E, F 7→ F , H 7→ H and noticing
that the first two defining relations of Uh hold in U(sl2) and for the third we have

EF − FE =
K −K−1

q1/2 − q−1/2
=

∑∞
n=0

1+(−1)n

n!2n
hnHn∑∞

n=0
1+(−1)n

n!2n
hn

=

=

hH
2

∑∞
n=0

h2n

(2n+1)!22n
H2n

h
2

∑∞
n=0

h2n

(2n+1)!22n

≡ H (mod h)

Concerning the module structure, we have

U⊗mh
∼= U(sl2)⊗m[[h]] ∼= S(sl2)⊗m[[h]]

as Q[[h]]-modules, for a detailed explanation of this see [Kas95].
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3.5 Weight systems

The previous section provides us with an invariant of string links by taking A = Uh(sl2) in
the construction of universal quantum invariants, we will denote this invariant simply as Q.
From now on we will think at this invariant as valued in S⊗m[[h]] as described in the end of
the previous section. The goal of the present chapter is to prove that a suitable reduction
of this invariant is actually a concordance invariant of string links as we describe in Section 3.6.

The approach is to connect Q to Milnor invariants, in fact these are known to be concordance
invariants [Cas75] (this also follows from Theorem 3 of Chapter 1). To do this recall that the
k-th Milnor invariant has values in L1⊗ Lk+1 and thanks to a property called cyclic simmetry
[Mil54, Mil57] actually in

Dk = Ker([·, ·] : L1 ⊗ Lk+1 → Lk+2)

We pointed out in Chapter 1 that there is a group homomorphism turning brackets into trees
ηk : Tk → Dk and this is not injective in general. On the other hand

ηk : Tk ⊗Q→ Dk ⊗Q

is an isomorphism of vecor spaces over Q. We can build then a map

SL(m)→
µk

Dk ⊗Q →
ηk−1
Tk ⊗Q→

W
S⊗m[[h]]

Here W is a Q-linear map called weight system of the quantum invariant Q, it was introduced
by Kontsevich to unify the world of quantum invariants and show that, over the rationals, they
all come from a unique invariant called today Kontsevich integral, see for example Chapter 6
of [Oht02] for more about this.

The weight system W is defined as follows. If t ∈ Tk ⊗ Q connected and k > 0, cut in
two half edges every edge of t that is adjacent to two degree 3 vertices. This cut gives a
collection of k tripodes with labels on the edges and no labels on the half edges, see Figure
3.13.
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Figure 3.13: Weight system

The Lie bracket of sl2 gives a Q-linear map sl2 ⊗ sl2 → sl2 and we can use the nonde-
generate Killing form of sl2

k : sl2 ⊕ sl2 → sl2 (x, y) 7→ tr(ad(x) ad(y))

to identify sl2 = (sl2)∗ and represent it as a tensor J ∈ sl2 ⊗ sl2 ⊗ sl2, we have denoted
here with ad(x) : sl2 → sl2 the adjoint representation y 7→ ad(x)(y) = [x, y] of sl2, see
[Hum72] for more about this. Each tripod inherits a cyclic orientation from t and we number
its edges and half edges with {1, 2, 3} according to this, with an arbitrary choice of who
gets 1. Choose an arbitrary order on tripodes T1, . . . , Tk and associate to each Ti a 3-tensor
Ji = ε(Ti)J ∈ sl⊗3

2 where ε(Ti) is the sign of t in the vertex of the tripode. Form the product

J1⊗· · ·⊗Jk ∈ sl
⊗(a+2b)
2 , here a is the number of vertices of degree 1 in t and b is the number

of edges that have been cut. Each of the b edges that have been cut is then the union of
two half edges with indices i, j ∈ {1, 2, 3} and we contract the i-th component and the j-th
component of the corresponding 3-tensors in J1 ⊗ · · · ⊗ Jk. After these contractions we get
a tensor in sl⊗a2 and each component of this tensor corresponds to a vertex of degree 1 in t
and hence has a label in {1, . . . ,m}. We finally get a tensor

Wk(t) ∈ S(sl2)⊗m

whose s-th component is the product in the symmetric algebra S(sl2) of all components in the
previous tensor labelled by s. The weight system is finally given by extending Wk to sums of
connected trees in Tk⊗Q by Q-linearity and then defining for an arbitrary t = t0 + · · ·+ td ∈
T ⊗Q = T0 ⊗Q⊕ · · · ⊕ Td ⊗Q

W (t) = W0(t0)1 +W1(t1)h+W2(t2)h2 + · · ·+Wd(td)h
d ∈ S(sl2)⊗m[[h]]

The fact that W is a well-defined function on T ⊗ Q, i.e. that W (t) = 0 if t = 0 modulo
AS and IHX relations defined in Chapter 1, follows form the fact that the Killing form is
ad-invariant and the Jacobi identity in sl2.
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As a final remark, the same construction works using any ad-invariant nondegenerate sym-
metric bilinear form and not just the Killing form.

3.6 Concordance reduction

We introduce two reduction Q-linear maps πt, πh : S⊗m[[h]]→ S⊗m[[h]] defined as follows.

πt

(∑
k≥0

tkh
k

)
=
∑
k≥1

(tk)k+1h
k

this map kills the order 0 term of the series and (·)k+1 reduces the coefficients of order k > 0
taking their degree k + 1 part in S⊗m, here the grading is given by the tensor grading of the
usual grading of the symmetric algebra S, one can think at the latter simply by considering it
as the polynomial algebra Q[E,F,H] and taking as degree the usual degree of multivariate
polynomials.

The other is defined as

πh

(∑
k≥0

tkh
k

)
=

m−1∑
k=1

〈tk〉k+1h
k

this maps kills the terms of order 0 and ≥ m of the series and 〈·〉k+1 reduces the coefficients
of order 1 ≤ k < m taking in their degree k + 1 part the tensors whose degree in each
component is 0 or 1.

To simplify notation, we will denote just with µk the map

SL(m)→
µk

Dk ⊗Q →
ηk−1
Tk ⊗Q

and with µhk its reduction modulo trees with no repeated labels on leaves.

The following results are due to Meilhan and Suzuki [MS14] and we give here a sketch
of their arguments.

THEOREM 7. If L is a string link with µhk(L) = 0 for k < N then

πhQ(L) ≡ WµhN(L) (modhN+1)

in particular πhQ is a link-homotopy invariant of string links.

Proof. The outline of the proof is to reduce the problem to test the congruence on link ho-
motopy classes of string links and then carry out the actual computation on a system of braid
representatives for these classes.

The right hand side is known to be invariant up to link-homotopy thanks to the work of
Habegger and Lin [HL90]. For the invariance of the left hand side we use the theory of
claspers, introduce by Habiro in [Hab00]. Let L1, L2 be link-homotopic string links, then for
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every k ≥ 1 there exist n(k) overpassing repeated tree claspers R1, . . . , Rn(k) of degree ≤ k
for 1 such that

L1 ∼Ck+1
L21R1 · · ·1Rn(k)

Using that Q modulo hk+1 is a finite type invariant of degree ≤ k and the fact that by
construction Q is multiplicative with respect to stacking of string links we have, thanks to
the invariance of finite type invariants up to clasper surgeries, that

Q(L1) ≡ Q(L2)Q(1R1) · · · Q(1Rn(k)
) (modhk+1)

The proof of link-homotopy invariance ends with a detailed study of Q on surgered trivial
string links and by taking k = N and using the properties of the map πh.

The above mentioned result of Habegger and Lin tells that called for k ≥ 2

Ik = {iσ(1) · · · iσ(k−2)ik−1ik|1 ≤ i1 < · · · < ik ≤ m,σ ∈ Sk−2}

then {µI |I ∈ Ik, 2 ≤ k ≤ m} is a set of complete link-homotopy invariants of string links
(we are thinking here at Milnor invariants as integer numbers).

For every I ∈ Ik we have a pure braid (i.e. a string link with monotone strings) defined
in terms of commutators

BI = [[· · · [[Ai1i2 , Ai2i3 ], Ai3i4 ], · · · ], Aik−1ik ]

here Ast is the pure braid where the s-th string overpasses the strings s + 1, . . . , t and then
underpasses the t-th string and goes back to the s-th position by overpassing all strings, see
Figure 3.14 for an example with m = 4.

1 2 3 4

A   =
13

Figure 3.14: Elementary braid

The key point now is that any string link L with m components is link-homotopic to
bL1 · · · bLm−1 where

bLk =
∏

I∈Ik+1

(BI)
µI(bLi )
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here µI(b
L
1 ) = µI(L) and µI(b

L
i ) = µI(L)− µI(bL1 · · · bLi−1) if i ≥ 2.

The proof of the theorem consists then in checking the claim on this class of string links,
for a detailed computation we refer to the original paper of Meilhan and Suzuki.

THEOREM 8. If L is a string link with µk(L) = 0 for k < N then

πtQ(L) ≡ WµN(L) (modhN+1)

in particular πtQ is a concordance invariant of string links.

Proof. The outline of the proof is to reduce to the previous theorem via an operation called
cabling. For p ≥ 1 we define the cabling map D(p) : SL(m) → SL(pm) that replaces each
component in a string link with p parallel copies, see Figure 3.15 below.

Figure 3.15: Cabling

Now in [HM00] is shown that µk(L) = 0 for every k < N if and only if µhk(D
(p)(L)) = 0

for every k < N . The key step is now to observe that for N < p the following diagram
commutes

S⊗m[[h]] SLN(m) S⊗m[[h]]

S⊗pm[[h]] SLhN(pm) S⊗pm[[h]]

πtQ WµN

πh∆
(p)
h D(p) πh∆(p)

πhQ WµhN

In this diagram SLN denotes the set of string links L with µk(L) = 0 for k < N and
SLhN those with µhk(L) = 0 for k < N . On the vertical sides two different coproducts act
on S⊗m[[h]]. They are both p-powers of the two coproducts ∆h and ∆, the first one is
induced by the isomorphism of Q[[h]]-modules U⊗mh

∼= S⊗m[[h]] and the second one is given
by ∆(x) = x⊗ 1 + 1⊗ x.

For more details we refer to the original paper of Meilhan and Suzuki. The fact that πtQ is
a concordance invariant follows from the concordance invariance of Milnor invariants.
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