A Multiple Cell Proportional Counter for Continuous Airborne Radon Assessment

Table of Content

INTRODUCTION 5
References 8

Section I : The NORM/TENORM Problem and Radon Assessment 10

1. Introduction 10
2. About the NORM-TENORM problem 11
3. Activities that lead to the technological enhancement of NORM 11
4. Analysis of Pathways Associated with NORM 12
5. The regulatory and normative policies in radiation protection 13
6. Radon Concentration Measurement 13
 6.1. A short history of Radon 13
 6.2. Radon and its progeny 14
 6.3. Special quantities and units 14
 6.3.1. Potential alpha energy 14
 6.3.2. Concentration in air 15
 6.3.3 The equilibrium equivalent concentration in air 15
 6.3.4 The equilibrium factor F 15
 6.3.5 Inhalation exposure of individuals (The Working level month) 16
6. Radon gas measurement methods 17
 7.1. Activated Charcoal Adsorption 17
 7.2. Alpha Track Detection (filtered) 17
 7.3. Unfiltered Track Detection 17
 7.4. Charcoal Liquid Scintillation 18
 7.5. Continuous Radon Monitoring 18
 7.6 Electret Ion Chamber: Long-Term 18
 7.7. Electret Ion Chamber: Short-Term 19
 7.8. Grab Radon/Activated Charcoal 19
Section II: The use of gas-filled detectors for radon activity concentration measurement

1. Introduction
2. Application to airborne radon monitoring
3. The use of gas-filled detectors for radon measurement in air
4. The electron attachment effect in air-mixed counting gases
5. The gas amplification compensation
6. Experimental set-up and procedure
7. Experimental results and discussion
8. Applicability for radon measurements and achievable sensitivity
9. Conclusions

Section III: Design and construction of the Multiple Cell Proportional Counter (MCPC)

1. Introduction
2. Design criteria and description of the MCPC
3.1. General Features
3.2. The designed MCPC
3.3. The operation principle of the MCPC
3. The MCPC characteristics and parameters definition
3.1. Alpha counting efficiency
3.2. Radon counting efficiency
3.3. The minimum detectable activity concentration of radon
3.4. Radon sensitivity
3.5. The wall effect loss, \(WEL \)
3.6. The attachment effect loss, \(AEL \)
3.7. The grid opacity effect loss, \(GOEL \)
3.8. The end cell contribution, \(ECC \)
3.9. The spectrometric and counting quality factors
4. The Monte Carlo simulation code RADON-MCPC
5. Design optimization and performance requirements
5.1 Maximum air fraction allowed
5.2 Cell inner radius selection
5.3 Selection of the number of effective counting cells, \(NECC \)
6. Operating high voltage
7. Selection of the optimum discrimination level
8. Selection of the suitable gas flow rate
9. Response to a short duration varying radon pulse
10. Conclusion
References

Section IV : The Monte Carlo Simulation code RADON-MCPC
1. Simulation of gas-filled detectors
2. Description of the Monte Carlo simulation code RADON-MCPC
3. The \({}^{222}\text{Rn} \) and progenies activity evolution inside the counter
3.1. The radioactive equilibrium inside the counter
3.2. Response to a stepwise variation of radon activity concentration
3.3. Response to a Gaussian-shaped radon pulse transient
4. The derivation of the electric field distribution
5. Random alpha particles emission and the stopping process
6. Modeling of the wall effect and the grid opacity effect
7. The electron attachment effect and gas amplification mechanism
7.1 The electron attachment coefficient distribution
7.2 The gas amplification mechanism
8. The alpha pulse height spectra
9. Convergence study of the code
10. Conclusion
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>109</td>
</tr>
<tr>
<td>Section V : Simulation results and experimental tests the MCPC prototype</td>
<td>111</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>111</td>
</tr>
<tr>
<td>2. Experimental setup and measurement procedures</td>
<td>111</td>
</tr>
<tr>
<td>2.1. Counter calibration procedure</td>
<td>111</td>
</tr>
<tr>
<td>2.2. Associated electronics and data acquisition procedure</td>
<td>115</td>
</tr>
<tr>
<td>3. Results and discussion</td>
<td>116</td>
</tr>
<tr>
<td>4. Comparison with other gas-filled measuring devices</td>
<td>121</td>
</tr>
<tr>
<td>4.1. Brief review of some developed airborne radon monitors</td>
<td>121</td>
</tr>
<tr>
<td>4.1.1. The ATMOS (Gammadata Metteknik) Radon gas monitor</td>
<td>121</td>
</tr>
<tr>
<td>4.1.2. The PTB MultiWire Pulse Ionization Chamber (MWPIC)</td>
<td>122</td>
</tr>
<tr>
<td>4.1.3. The Genitron Instruments GmbH AlphaGUARD radon monitor</td>
<td>123</td>
</tr>
<tr>
<td>4.1.4. The Durridge Inc. RAD7 radon monitor</td>
<td>123</td>
</tr>
<tr>
<td>4.2. Comparison of the MCPC performances to those of other devices</td>
<td>123</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>125</td>
</tr>
<tr>
<td>References</td>
<td>126</td>
</tr>
<tr>
<td>CONCLUDING SUMMARY</td>
<td>129</td>
</tr>
<tr>
<td>Appendix – A : RADON-MCPC , source file (ultimate version)</td>
<td>132</td>
</tr>
<tr>
<td>Appendix – B : RADON-MCPC , structure of input data file</td>
<td>181</td>
</tr>
<tr>
<td>Appendix – C : RADON-MCPC , structure of output data file</td>
<td>183</td>
</tr>
<tr>
<td>Appendix – D : List of Publications and communications</td>
<td>185</td>
</tr>
</tbody>
</table>